research

Phase diagram and single-particle spectrum of CuO2_2 layers within a variational cluster approach to the 3-band Hubbard model

Abstract

We carry out a detailed numerical study of the three-band Hubbard model in the underdoped region both in the hole- as well as in the electron-doped case by means of the variational cluster approach. Both the phase diagram and the low-energy single-particle spectrum are very similar to recent results for the single-band Hubbard model with next-nearest-neighbor hoppings. In particular, we obtain a mixed antiferromagnetic+superconducting phase at low doping with a first-order transition to a pure superconducting phase accompanied by phase separation. In the single-particle spectrum a clear Zhang-Rice singlet band with an incoherent and a coherent part can be seen, in which holes enter upon doping around (π/2,π/2)(\pi/2,\pi/2). The latter is very similar to the coherent quasi-particle band crossing the Fermi surface in the single-band model. Doped electrons go instead into the upper Hubbard band, first filling the regions of the Brillouin zone around (π,0)(\pi,0). This fact can be related to the enhanced robustness of the antiferromagnetic phase as a function of electron doping compared to hole doping.Comment: 14 pages, 15 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019