416 research outputs found

    The influence of the precipitation rate on the properties of porous chromia

    Get PDF
    The properties were studied of heated (320°C) chromia samples, prepared by two precipitation methods: \ud \ud 1. (1) addition of ammonia to chromium salt solutions,\ud 2. (2) OH− formation in chromium salt solutions through hydrolysis of urea.\ud \ud Samples formed by means of the first method are macro or mesoporous and have a lower specific surface area (~200 m2·g−1) than those formed by urea hydrolysis (~300 m2·g−1). Only in the case of a very slow addition of the ammonia solution these properties of the chromia's become equal. Experiments show that the micro porous type samples with high surface area are only formed if the pH range 5.1 to 5.7 is passed slowly. The formation of polychromium complexes of uniform size is suggested.\ud \u

    Experiment selection for the discrimination of semi-quantitative models of dynamical systems

    Get PDF
    AbstractModeling an experimental system often results in a number of alternative models that are all justified by the available experimental data. To discriminate among these models, additional experiments are needed. Existing methods for the selection of discriminatory experiments in statistics and in artificial intelligence are often based on an entropy criterion, the so-called information increment. A limitation of these methods is that they are not well-adapted to discriminating models of dynamical systems under conditions of limited measurability. Moreover, there are no generic procedures for computing the information increment of an experiment when the models are qualitative or semi-quantitative. This has motivated the development of a method for the selection of experiments to discriminate among semi-quantitative models of dynamical systems. The method has been implemented on top of existing implementations of the qualitative and semi-quantitative simulation techniques QSIM, Q2, and Q3. The applicability of the method to real-world problems is illustrated by means of an example in population biology: the discrimination of four competing models of the growth of phytoplankton in a bioreactor. The models have traditionally been considered equivalent for all practical purposes. Using our model discrimination approach and experimental data we show, however, that two of them are superior for describing phytoplankton growth under a wide range of experimental conditions

    The origin of alkaline fen in the Mosbeek Valley in the Netherlands is due to human impact rather than a natural development

    Get PDF
    Alkaline fens are important Natura 2000 habitats, which harbor many endangered plant species. Alkaline fens are formed in areas with groundwater discharge and usually developed in a natural way in the early Holocene. We radiocarbon dated the base of three peat deposits from spring fens along the flanks of the ice-pushed ridge near the village of Ootmarsum to find out when and why peat-forming vegetation started to grow. We cored a sequence in the Mosbeek Valley for detailed paleoecological analyses of micro- and macrofossils. To our surprise, we found strong evidence for human impact during the 13th and 14th centuries AD as the triggering factor for starting organic colluvial accumulation and peat growth at sites where natural springs are present. This shows that this fen is not a relic, but results from changes in land use. Human actions were: (1) deforestation causing increased run-off and reduced evaporation on the plateaus by the vegetation, resulting in increased seepage in the valleys, (2) intensification of agriculture, trade routes, and paired erosion, which formed colluvial deposits and sediment fans that hampered fast run-off water, (3) increased back and groundwater levels after the foundation of watermills; four lowering water levels due to intensification and reorganization of water use by new watermills, and (4) head cut erosion and spring erosion after privatization and cultivation of common pastures after the mid 19th century. This means that cultural-historical changes in the landscape were much more important for alkaline fens than expected.<br/

    Ecohydrologie van de Zuid-Limburgse hellingmoerassen : inventarisatieatlas van vegetatie, bodem en grondwaterkwaliteit

    Get PDF
    Om behoud en herstel van de natte hooilanden en kalkmoerassen in de Zuid Limburgse beekdalen mogelijk te maken, is niet alleen meer inzicht nodig in de sturende processen en sleutelfactoren maar, om te beginnen, in de actuele kwaliteit (hydrologie, vegetatie, bodem). Er bestaat namelijk tot op heden slechts een beperkt inzicht in de actuele (natuur)kwaliteiten van de naar schatting 180 helling- en bronmoerassen in Zuid- Limburg, en de kansen en knelpunten voor het behoud en herstel

    Sharp bounds on the critical stability radius for relativistic charged spheres

    Full text link
    In a recent paper by Giuliani and Rothman \cite{GR}, the problem of finding a lower bound on the radius RR of a charged sphere with mass M and charge Q<M is addressed. Such a bound is referred to as the critical stability radius. Equivalently, it can be formulated as the problem of finding an upper bound on M for given radius and charge. This problem has resulted in a number of papers in recent years but neither a transparent nor a general inequality similar to the case without charge, i.e., M\leq 4R/9, has been found. In this paper we derive the surprisingly transparent inequality MR3+R9+Q23R.\sqrt{M}\leq\frac{\sqrt{R}}{3}+\sqrt{\frac{R}{9}+\frac{Q^2}{3R}}. The inequality is shown to hold for any solution which satisfies p+2pTρ,p+2p_T\leq\rho, where p0p\geq 0 and pTp_T are the radial- and tangential pressures respectively and ρ0\rho\geq 0 is the energy density. In addition we show that the inequality is sharp, in particular we show that sharpness is attained by infinitely thin shell solutions.Comment: 20 pages, 1 figur

    Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content.</p> <p>Results</p> <p>Batch cultures of <it>Caldicellulosiruptor saccharolyticus </it>and <it>Thermotoga neapolitana </it>produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in <it>Miscanthus </it>hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l<sup>-1 </sup>in pH-controlled batch cultures. <it>T. neapolitana </it>showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H<sub>2 </sub>per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of <it>C</it>. <it>saccharolyticus </it>compared to <it>T. neapolitana</it>. In contrast, the rate of substrate consumption and hydrogen production was higher with <it>T. neapolitana</it>. At substrate concentrations exceeding 30 g l<sup>-1</sup>, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained.</p> <p>Conclusion</p> <p>Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock <it>Miscanthus</it>. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.</p

    Cosmological Black Holes

    Get PDF
    In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss finally the possibility to detect the presence of these black holes through their weak and strong lensing effects and their influence on the cosmic background radiation.Comment: 14 pages, new completely revised version, to appear on GR

    Lyapunov spectral analysis of a nonequilibrium Ising-like transition

    Full text link
    By simulating a nonequilibrium coupled map lattice that undergoes an Ising-like phase transition, we show that the Lyapunov spectrum and related dynamical quantities such as the dimension correlation length~ξδ\xi_\delta are insensitive to the onset of long-range ferromagnetic order. As a function of lattice coupling constant~gg and for certain lattice maps, the Lyapunov dimension density and other dynamical order parameters go through a minimum. The occurrence of this minimum as a function of~gg depends on the number of nearest neighbors of a lattice point but not on the lattice symmetry, on the lattice dimensionality or on the position of the Ising-like transition. In one-space dimension, the spatial correlation length associated with magnitude fluctuations and the length~ξδ\xi_\delta are approximately equal, with both varying linearly with the radius of the lattice coupling.Comment: 29 pages of text plus 15 figures, uses REVTeX macros. Submitted to Phys. Rev. E

    Singular shell embedded into a cosmological model

    Full text link
    We generalize Israel's formalism to cover singular shells embedded in a non-vacuum Universe. That is, we deduce the relativistic equation of motion for a thin shell embedded in a Schwarzschild/Friedmann-Lemaitre-Robertson-Walker spacetime. Also, we review the embedding of a Schwarzschild mass into a cosmological model using "curvature" coordinates and give solutions with (Sch/FLRW) and without the embedded mass (FLRW).Comment: 25 pages, 2 figure
    corecore