13 research outputs found

    Quantitative live-cell imaging and computational modelling shed new light on endogenous WNT/CTNNB1 signaling dynamics

    Get PDF
    WNT/CTNNB1 signaling regulates tissue development and homeostasis in all multicellular animals, but the underlying molecular mechanism remains incompletely understood. Specifically, quantitative insight into endogenous protein behavior is missing. Here, we combine CRISPR/Cas9-mediated genome editing and quantitative live-cell microscopy to measure the dynamics, diffusion characteristics and absolute concentrations of fluorescently tagged, endogenous CTNNB1 in human cells under both physiological and oncogenic conditions. State-of-the-art imaging reveals that a substantial fraction of CTNNB1 resides in slow-diffusing cytoplasmic complexes, irrespective of the activation status of the pathway. This cytoplasmic CTNNB1 complex undergoes a major reduction in size when WNT/CTNNB1 is (hyper)activated. Based on our biophysical measurements, we build a computational model of WNT/CTNNB1 signaling. Our integrated experimental and computational approach reveals that WNT pathway activation regulates the dynamic distribution of free and complexed CTNNB1 across different subcellular compartments through three regulatory nodes: the destruction complex, nucleocytoplasmic shuttling, and nuclear retention

    A closer look at WNT/CTNNB1 signaling

    No full text

    A novel Axin2 knockā€in mouse model for visualization and lineage tracing of WNT/CTNNB1 responsive cells

    Get PDF
    Wnt signal transduction controls tissue morphogenesis, maintenance and regeneration in all multicellular animals. In mammals, the WNT/CTNNB1 (Wnt/Ī²ā€catenin) pathway controls cell proliferation and cell fate decisions before and after birth. It plays a critical role at multiple stages of embryonic development, but also governs stem cell maintenance and homeostasis in adult tissues. However, it remains challenging to monitor endogenous WNT/CTNNB1 signaling dynamics in vivo. Here, we report the generation and characterization of a new knockā€in mouse strain that doubles as a fluorescent reporter and lineage tracing driver for WNT/CTNNB1 responsive cells. We introduced a multiā€cistronic targeting cassette at the 3ā€² end of the universal WNT/CTNNB1 target gene Axin2. The resulting knockā€in allele expresses a bright fluorescent reporter (3xNLSā€SGFP2) and a doxycyclineā€inducible driver for lineage tracing (rtTA3). We show that the Axin2P2Aā€rtTA3ā€T2Aā€3xNLSā€SGFP2 strain labels WNT/CTNNB1 responsive cells at multiple anatomical sites during different stages of embryonic and postnatal development. It faithfully reports the subtle and dynamic changes in physiological WNT/CTNNB1 signaling activity that occur in vivo. We expect this mouse strain to be a useful resource for biologists who want to track and trace the location and developmental fate of WNT/CTNNB1 responsive stem cells in different contexts

    Right Ventricular and Right Atrial Function Are Less Compromised in Pulmonary Hypertension Secondary to Heart Failure With Preserved Ejection Fraction: A Comparison With Pulmonary Arterial Hypertension With Similar Pressure Overload

    No full text
    Background: Heart failure with preserved ejection fraction (HFpEF) is a prevalent disorder for which no effective treatment yet exists. Pulmonary hypertension (PH) and right atrial (RA) and ventricular (RV) dysfunction are frequently observed. The question remains whether the PH with the associated RV/RA dysfunction in HFpEF are markers of disease severity. Methods: To obtain insight in the relative importance of pressure-overload and left-to-right interaction, we compared RA and RV function in 3 groups: 1. HFpEF (n=13); 2. HFpEF-PH (n=33), and; 3. pulmonary arterial hypertension (PAH) matched to pulmonary artery pressures of HFpEF-PH (PH limited to mPAP >= 30 and <= 50 mmHg) (n=47). Patients underwent right heart catheterization and cardiac magnetic resonance imaging. Results: The right ventricle in HFpEF-PH was less dilated and hypertrophied than in PAH. In addition, RV ejection fraction was more preserved (HFpEF-PH: 52 +/- 11 versus PAH: 36 +/- 12%). RV filling patterns differed: vena cava backflow during RA contraction was observed in PAH only. In HFpEF-PH, RA pressure was elevated throughout the cardiac cycle (HFpEF-PH: 10 [8-14] versus PAH: 7 [5-10] mm Hg), while RA volume was smaller, reflecting excessive RA stiffness (HFpEF-PH: 0.14 [0.10-0.17] versus PAH: 0.08 [0.06-0.11] mm Hg/mL). RA stiffness was associated with an increased eccentricity index (HFpEF-PH: 1.3 +/- 0.2 versus PAH: 1.2 +/- 0.1) and interatrial pressure gradient (9 [5 to 12] versus 2 [-2 to 5] mm Hg). Conclusions: RV/RA function was less compromised in HFpEF-PH than in PAH, despite similar pressure-overload. Increased RA pressure and stiffness in HFpEF-PH were explained by left atrial/RA-interaction. Therefore, our results indicate that increased RA pressure is not a sign of overt RV failure but rather a reflection of HFpEF-severity

    A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium

    Get PDF
    The most successful genetically encoded calcium indicators (GECIs) employ an intensity or ratiometric readout. Despite a large calcium-dependent change in fluorescence intensity, the quantification of calcium concentrations with GECIs is problematic, which is further complicated by the sensitivity of all GECIs to changes in the pH in the biological range. Here, we report on a sensing strategy in which a conformational change directly modifies the fluorescence quantum yield and fluorescence lifetime of a circular permutated turquoise fluorescent protein. The fluorescence lifetime is an absolute parameter that enables straightforward quantification, eliminating intensity-related artifacts. An engineering strategy that optimizes lifetime contrast led to a biosensor that shows a 3-fold change in the calcium-dependent quantum yield and a fluorescence lifetime change of 1.3ā€‰ns. We dub the biosensor Turquoise Calcium Fluorescence LIfeTime Sensor (Tq-Ca-FLITS). The response of the calcium sensor is insensitive to pH between 6.2ā€“9. As a result, Tq-Ca-FLITS enables robust measurements of intracellular calcium concentrations by fluorescence lifetime imaging. We demonstrate quantitative imaging of calcium concentrations with the turquoise GECI in single endothelial cells and human-derived organoids
    corecore