31 research outputs found

    Multiple targeting by the antitumor drug tamoxifen: a structure-activity study.

    No full text
    Tamoxifen is a well-known antiestrogen used for the hormonotherapy of estrogen receptor positive breast cancer. In addition to its high affinity binding to the estrogen receptor (ER), tamoxifen binds with comparable affinity to the microsomal antiestrogen binding site (AEBS), and inhibits with a micromolar efficiency, protein kinase C (PKC), calmodulin (CaM)-dependent enzymes and Acyl CoenzymeA: Cholesterol Acyl Transferase (ACAT). Each of these tamoxifen targets might explain the genomic as well as non-genomic effects of tamoxifen. In this review, we will report current knowledge about the structural features of tamoxifen involved in this multiple targeting. These data provide a useful guide for the conception of selective ligands of ERs, AEBS, PKC, CaM or ACAT based on the chemical structure of tamoxifen

    Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation.

    No full text
    International audienceTamoxifen (Tx) interacts with high affinity to the microsomal antiestrogen binding site (AEBS) which is a hetero-oligomeric complex involved in cholesterol metabolism. We established that Tx and other AEBS ligands induce breast cancer cell differentiation, apoptosis and autophagy through the induction of sterol accumulation. We determined that cell death is sterol- and ROS-dependent and is prevented by the antioxidant vitamin E. Macroautophagy is characterized by the accumulation of autophagic vacuoles, an increase in the expression of Beclin 1 and the stimulation of autophagic flux. We established that macroautophagy is sterol-dependent and is associated with cell survival rather than cytotoxicity, since blockage of macroautophagy sensitizes cells to AEBS ligands. These results show that the accumulation of sterols by AEBS ligands in MCF-7 cells induces both apoptosis and macroautophagy. Collectively, these data support a therapeutic potential for selective AEBS ligands in breast cancer management and reveal a mechanism that explains the induction of autophagy in MCF-7 cells by Tx and other selective estrogen receptor modulators. Moreover these data give pharmacological clues to improve the apoptotic efficacy of AEBS ligands

    Synthesis and biological properties of new stilbene derivatives of resveratrol as new selective aryl hydrocarbon modulators.

    No full text
    We developed new stilbene derivatives of resveratrol (E)-1-(4'-hydroxyphenyl)-2-(3,5-dihydroxyphenyl)ethene) selective for AhR and devoid of affinity for ER. Among the 24 stilbenes synthesized, all display a higher affinity than resveratrol for AhR. (E)-1-(4'-Trifluoromethylphenyl)-2-(3,5-ditrifluoromethylphenyl)ethene (4e), (E)-1-(4'-methoxyphenyl)-2-(3,5-dichlorophenyl)ethene (4j), and (E)-1-(4'-chlorophenyl)-2-(3,5-dichlorophenyl)ethene (4b) are selective, high-affinity AhR antagonists with, respective, K(i)s of 2.1, 1.4, and 1.2 nM. (E)-1-(4'-Trifluoromethylphenyl)-2-(3,5-dichlorophenyl)ethene (4i) displays a K(i) of 0.2 nM and is a selective and high-affinity agonist on AhR

    Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands.

    No full text
    International audienceThe microsomal antiestrogen binding site (AEBS) is a high-affinity target for the antitumor drug tamoxifen and its cognate ligands that mediate breast cancer cell differentiation and apoptosis. The AEBS, a hetero-oligomeric complex composed of 3beta-hydroxysterol-Delta8-Delta7-isomerase (D8D7I) and 3beta-hydroxysterol-Delta7-reductase (DHCR7), binds different structural classes of ligands, including ring B oxysterols. These oxysterols are inhibitors of cholesterol-5,6-epoxide hydrolase (ChEH), a microsomal epoxide hydrolase that has yet to be molecularly identified. We hypothesized that the AEBS and ChEH might be related entities. We show that the substrates of ChEH, cholestan-5alpha,6alpha-epoxy-3beta-ol (alpha-CE) and cholestan-5beta,6beta-epoxy-3beta-ol (beta-CE), and its product, cholestane-3beta,5alpha,6beta-triol (CT), are competitive ligands of tamoxifen binding to the AEBS. Conversely, we show that each AEBS ligand is an inhibitor of ChEH activity, and that there is a positive correlation between these ligands' affinity for the AEBS and their potency to inhibit ChEH (r2=0.95; n=39; P<0.0001). The single expression of D8D7I or DHCR7 in COS-7 cells slightly increased ChEH activity (1.8- and 2.6-fold), whereas their coexpression fully reconstituted ChEH, suggesting that the formation of a dimer is required for ChEH activity. Similarly, the single knockdown of D8D7I or DHCR7 using siRNA partially inhibited ChEH in MCF-7 cells, whereas the knockdown of both D8D7I and DHCR7 abolished ChEH activity by 92%. Taken together, our findings strongly suggest that the AEBS carries out ChEH activity and establish that ChEH is a new target for drugs of clinical interest, polyunsaturated fatty acids and ring B oxysterols

    Synthesis of new alkylaminooxysterols with potent cell differentiating activities: identification of leads for the treatment of cancer and neurodegenerative diseases.

    No full text
    International audienceWe describe here the syntheses and the biological properties of new alkylaminooxysterols. Compounds were synthesized through the trans-diaxial aminolysis of 5,6-alpha-epoxysterols with various natural amines including histamine, putrescine, spermidine, or spermine. The regioselective synthesis of these 16 new 5alpha-hydroxyl-6beta-aminoalkylsterols is presented. Compounds were first screened for dendrite outgrowth and cytotoxicity in vitro, and two leads were selected and further characterized. 5alpha-Hydroxy-6beta-[2-(1H-imidazol-4-yl)ethylamino]cholestan-3beta-ol, called dendrogenin A, induced growth control, differentiation, and the death of tumor cell lines representative of various cancers including metastatic melanoma and breast cancer. 5alpha-Hydroxy-6beta-[3-(4-aminobutylamino)propylamino]cholest-7-en-3beta-ol, called dendrogenin B, induced neurite outgrowth on various cell lines, neuronal differentiation in pluripotent cells, and survival of normal neurones at nanomolar concentrations. In summary, we report that two new alkylaminooxysterols, dendrogenin A and dendrogenin B, are the first members of a class of compounds that induce cell differentiation at nanomolar concentrations and represent promising new leads for the treatment of cancer or neurodegenerative diseases

    Surprising unreactivity of cholesterol-5,6-epoxides towards nucleophiles.

    No full text
    International audienceWe recently established that drugs used for the treatment and the prophylaxis of breast cancers, such as tamoxifen, were potent inhibitors of cholesterol-5,6-epoxide hydrolase (ChEH), which led to the accumulation of 5,6α-epoxy-cholesterol (5,6α-EC) and 5,6β-epoxy-cholesterol (5,6β-EC). This could be considered a paradox because epoxides are known as alkylating agents with putative carcinogenic properties. We report here that, as opposed to the carcinogen styrene-oxide, neither of the ECs reacted spontaneously with nucleophiles. Under catalytic conditions, 5,6β-EC remains unreactive whereas 5,6α-EC gives cholestan-3β,5α-diol-6β-substituted compounds. These data showed that 5,6-ECs are stable epoxides and unreactive toward nucleophiles in the absence of a catalyst, which contrasts with the well-known reactivity of aromatic and aliphatic epoxides. These data rule out 5,6-EC acting as spontaneous alkylating agents. In addition, these data support the existence of a stereoselective metabolism of 5,6α-EC

    The prototypical inhibitor of cholesterol esterification, Sah 58-035 is an agonist of estrogen receptors.

    No full text
    We have recently shown that estrogen receptor (ER) ligands share a diphenyl ethane (DPE) pharmacophore with Sah 58-035, a prototypical inhibitor of the Acyl-Cholesterol-Acyl-Transferase (ACAT), which enabled us to establish that ER ligands were potent inhibitors of ACAT and blocked the formation of foam cells. In the present study, we have tested whether this structural similarity means that Sah 58-035 is an ER modulator. We report that Sah 58-035 bound to ERalpha and ERbeta with an IC50 of 2.9 microM and 3.1 microM respectively. Docking studies using molecular modeling of Sah 58-035 with the X-ray structure of the ER showed that Sah 58-035 fits well into the ligand binding site known for 4-hydroxy-tamoxifen. Despite having high three dimensional structural similarities with the pure antiestrogen ICI 164,384, we showed that Sah 58-035 is an agonist of ER for transcription and cellular proliferation. These data showed that Sah 58-035 was an estrogen receptor agonist, and that the size and the chemical nature of the side chain were critical for agonist versus antagonist activity on ER. This new molecular mechanism of action for Sah 58-035 has to be taken into account in understanding better its pharmacological activities. Moreover these data give new structural insights into the understanding of agonist versus antagonist activities of ER ligands and also for the conception of new drugs with a dual ACAT inhibition and ER modulation potential and their evaluation in different pathologies where both targets are involved, such as atherosclerosis, Alzheimer's disease and cancer

    Synthesis, binding and structure-affinity studies of new ligands for the microsomal anti-estrogen binding site (AEBS).

    No full text
    New compounds have been synthesized based on the structure of the anti-tumoral drug tamoxifen and its diphenylmethane derivative, N,N-diethyl-2-[(4-phenyl-methyl)-phenoxy]-ethanamine, HCl (DPPE). These new compounds have no affinity for the estrogen receptor (ER) and bind with various affinity to the anti-estrogen binding site (AEBS). Compounds 2, 10, 12, 13, 20a, 20b, 23a, 23b, 29 exhibited 1.1-69.5 higher affinity than DPPE, and compounds 23a and 23b have 1.2 and 3.5 higher affinity than tamoxifen. Three-dimensional structure analysis, performed using the intersection of the van der Waals volume occupied by tamoxifen in its crystallographic state and the van der Waals volume of these new compounds in their calculated minimal energy conformation, correlated well with their pKi for AEBS (r = 0.84, P<0.0001, n = 18). This is the first structure-affinity relationship (SAR) ever reported for AEBS ligands. Moreover in this study we have reported the synthesis of new compounds of higher affinity than the lead compounds and that are highly specific for AEBS. Since these compounds do not bind ER they will be helpful to study AEBS mediated cytotoxicity. Moreover our study shows that our strategy is a new useful guide to design high affinity and selective ligands for AEBS

    The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells.

    No full text
    International audienceDendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain

    Insights into the cholecystokinin 2 receptor binding site and processes of activation.

    No full text
    International audienceThe cholecystokinin (CCK) 2 receptor (CCK2R) appears as a pharmacological target for the treatment of many major diseases. To complete the mapping of the CCK2R binding site and its activation processes, we have looked for the receptor residues that interact with Trp6, an essential residue for CCK binding and activity. In our molecular model of the CCK-occupied CCK2R, the indole group of Trp6 stacked with the phenyl ring of Phe120 (ECL1) and interacted with the imidazole group of His381(H7.39) and the phenyl ring of Tyr385(H7.43). Mutagenesis and pharmacological studies validated these interactions. It is noteworthy that the mutation of Phe120 to Trp conferred constitutive activity to the CCK2R. Molecular modeling and experimental works identified the residues involved in the activation cascade initiated by Trp6 and revealed that the constitutively active F120W mutation mimics the conformational changes induced by Trp6 resulting in: 1) the exposure of Glu151(E3.49) of the conserved E/DRY motif 2) the formation of an amphiphatic pocket involving protonated Glu151(E3.49) and Leu330 (ICL3), and 3) the opening of the intracellular loops 2 and 3 and the release of Arg158 (ICL2). The R158A mutation was shown to affect inositol phosphate production, whereas the E151A and L330E mutations induced constitutive inositol phosphate production. Given that a constitutively active variant of the CCK2R has been identified in different cancers and the fact that the E151A mutant has been reported to induce tumors, these studies should help in the development of potent inverse agonists to inhibit the constitutive activation of the CCK2R
    corecore