34 research outputs found

    Formalin-Fixed, Paraffin-Embedded–Targeted Locus Capture:A Next-Generation Sequencing Technology for Accurate DNA-Based Gene Fusion Detection in Bone and Soft Tissue Tumors

    Get PDF
    Chromosomal rearrangements are important drivers in cancer, and their robust detection is essential for diagnosis, prognosis, and treatment selection, particularly for bone and soft tissue tumors. Current diagnostic methods are hindered by limitations, including difficulties with multiplexing targets and poor quality of RNA. A novel targeted DNA-based next-generation sequencing method, formalin-fixed, paraffin-embedded–targeted locus capture (FFPE-TLC), has shown advantages over current diagnostic methods when applied on FFPE lymphomas, including the ability to detect novel rearrangements. We evaluated the utility of FFPE-TLC in bone and soft tissue tumor diagnostics. FFPE-TLC sequencing was successfully applied on noncalcified and decalcified FFPE samples (n = 44) and control samples (n = 19). In total, 58 rearrangements were identified in 40 FFPE tumor samples, including three previously negative samples, and none was identified in the FFPE control samples. In all five discordant cases, FFPE-TLC could identify gene fusions where other methods had failed due to either detection limits or poor sample quality. FFPE-TLC achieved a high specificity and sensitivity (no false positives and negatives). These results indicate that FFPE-TLC is applicable in cancer diagnostics to simultaneously analyze many genes for their involvement in gene fusions. Similar to the observation in lymphomas, FFPE-TLC is a good DNA-based alternative to the conventional methods for detection of rearrangements in bone and soft tissue tumors.</p

    Trastuzumab plus pertuzumab for HER2-amplified advanced colorectal cancer:Results from the drug rediscovery protocol (DRUP)

    Get PDF
    Background: In 2–5% of patients with colorectal cancer (CRC), human epidermal growth factor 2 (HER2) is amplified or overexpressed. Despite prior evidence that anti-HER2 therapy confers clinical benefit (CB) in one-third of these patients, it is not approved for this indication in Europe. In the Drug Rediscovery Protocol (DRUP), patients are treated with off-label drugs based on their molecular profile. Here, we present the results of the cohort ‘trastuzumab/pertuzumab for treatment-refractory patients with RAS/BRAF-wild-type HER2amplified metastatic CRC (HER2+mCRC)’. Methods: Patients with progressive treatment-refractory RAS/BRAF-wild-type HER2+mCRC with measurable disease were included for trastuzumab plus pertuzumab treatment. Primary endpoints of DRUP are CB (defined as confirmed objective response (OR) or stable disease (SD) ≄ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and 24 patients in stage 2 if at least 1/8 patients had CB. To identify biomarkers for response, whole genome sequencing (WGS) was performed on pre-treatment biopsies. Results: CB was observed in 11/24 evaluable patients (46%) with HER2+mCRC, seven patients achieved an OR (29%). Median duration of response was 8.4 months. Patients had undergone a median of 3 prior treatment lines. Median progression-free survival and overall survival were 4.3 months (95% CI 1.9–10.3) and 8.2 months (95% CI 7.2–14.7), respectively. No unexpected toxicities were observed. WGS provided potential explanations for resistance in 3/10 patients without CB, for whom WGS was available. Conclusions: The results of this study confirm a clinically significant benefit of trastuzumab plus pertuzumab treatment in patients with HER2+mCRC.</p

    Patients with Biallelic BRCA1/2 Inactivation respond to Olaparib treatment across Histologic tumor types

    Get PDF
    Purpose: To assess the efficacy of olaparib, a PARP inhibitor (PARPi) in patients with tumors with BRCA1/2 mutations, regardless of histologic tumor type. Patients and Methods: Patients with treatment-refractory BRCA1/2-mutated cancer were included for treatment with offlabel olaparib 300 mg twice daily until disease progression or unacceptable toxicity. In Drug Rediscovery Protocol (DRUP), patients with treatment-refractory solid malignancies receive offlabel drugs based on tumor molecular profiles while whole-genome sequencing (WGS) is performed on baseline tumor biopsies. The primary endpoint was clinical benefit (CB; defined as objective response or stable disease ≄ 16 weeks according to RECIST 1.1). Per protocol patients were enrolled using a Simon-like two-stage model. Results: Twenty-four evaluable patients with nine different tumor types harboring BRCA1/2 mutations were included, 58% had CB from treatment with olaparib. CB was observed in patients with complete loss of function (LoF) of BRCA1/2, while 73% of patients with biallelic BRCA LoF had CB. In 17 patients with and seven without current labeled indication, 10 and four patients had CB, respectively. Treatment resistance in four patients with biallelic loss might be explained by an additional oncogenic driver which was discovered by WGS, including Wnt pathway activation, FGFR amplification, and CDKN2A loss, in three tumor types. Conclusions: These data indicate that using PARPis is a promising treatment strategy for patients with non-BRCA-associated histologies harboring biallelic BRCA LoF. WGS allows to accurately detect complete LoF of BRCA and homologous repair deficiency (HRD) signature as well as oncogenic drivers that may contribute to resistance, using a single assay

    One-fits-all pretreatment protocol facilitating Fluorescence in Situ Hybridization on formalin-fixed paraffin-embedded, fresh frozen and cytological slides

    Get PDF
    Background: The Fluorescence In Situ Hybridization (FISH) technique is a very useful tool for diagnostic and prognostic purposes in molecular pathology. However, clinical testing on patient tissue is challenging due to variables of tissue processing that can influence the quality of the results. This emphasizes the necessity of a standardized FISH protocol with a high hybridization efficiency. We present a pretreatment protocol that is easy, reproducible, cost-effective, and facilitates FISH on all types of patient material simultaneously with good quality results. During validation, FISH analysis was performed simultaneously on formalin-fixed paraffin-embedded, fresh frozen and cytological patient material in combination with commercial probes using our optimized one-fits-all pretreatment protocol. An optimally processed sample is characterized by strong specific signals, intact nuclear membranes, non-disturbing autofluorescence and a homogeneous DAPI staining. Results: In our retrospective cohort of 3881 patient samples, overall 93% of the FISH samples displayed good quality results leading to a patient diagnosis. All FISH were assessed on quality aspects such as adequacy and consistency of signal strength (brightness), lack of background and / or cross-hybridization signals, and additionally the presence of appropriate control signals were evaluated to assure probe accuracy. In our analysis 38 different FISH probes from 3 commercial manufacturers were used (Cytocell, Vysis and ZytoLight). The majority of the patients in this cohort displayed good signal quality and barely non-specific background fluorescence on all tissue types independent of which commercial probe was used. Conclusion: The optimized one-fits-all FISH method is robust, reliable and reproducible to deliver an accurate result for patient diagnostics in a lean workflow and cost-effective manner. This protocol can be used for widespread application in cancer and non-cancer diagnostics and research

    Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material

    Get PDF
    Background Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple genetic aberrations in diagnostic pathology practice, which is necessary for personalized cancer treatment. However, no standards regarding input material have been defined. This study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. Moreover, this study aimed to explore a standardized analysis pipeline to support consistent clinical decision-making. Method We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related genes, and validated the NGS detected variants in 250 FFPE samples using standard diagnostic assays. Next, 386 tumour samples were sequenced to explore the effect of input material on variant detection variables. For variant calling, Ion Torrent analysis software was supplemented with additional variant annotation and filtering. Results Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation showed a 98.5%concordance between NGS and conventional sequencing techniques, where NGS provided both the advantage of low input DNA concentration and the detectio

    Pathology and genetics of hereditary colorectal cancer

    No full text
    Colorectal cancer (CRC) accounts for over 8% of all deaths annually worldwide. Between 2 and 5% of all CRCs occur due to inherited syndromes, including Lynch syndrome, familial adenomatous polyposis, MUTYH-associated polyposis, Peutz–Jeghers syndrome, juvenile polyposis and Cowden/PTEN hamartoma syndrome. In addition, serrated polyposis is a clinically defined condition characterised by multiple colorectal serrated polyps and an increased risk of CRC but the genetics are not known. In most hereditary CRC syndromes, polyps undergo carcinogenesis, but the exact route to carcinoma seems to differ between the conditions. Discovery of the key germline mutations in these syndromes has been instrumental to our understanding of the underlying molecular mechanisms of colorectal carcinogenesis. This review summarises the genetic and pathological alterations in hereditary CRC syndromes

    Next-Generation Sequencing in Gynaecological Tumours : The Prognostic and Predictive Value of the Most Common Mutations Found in Ovarian, Endometrial, and Cervical Tumours: Literature Review and the University Medical Centre Utrecht Next-Generation Sequencing Data

    No full text
    Objective: To investigate whether next-generation sequencing (NGS) in ovarian and endometrial tumours can discover mutations with a relevant prognostic or predictive value. Methods: After a literature search, selected studies were critically appraised using the Quality in Prognostic Studies tool. Data on mutation incidence and correlations with prognostic and predictive items were extracted from relevant studies and compared to our own cohort consisting of 28 patients analysed using NGS. Results: Eight out of 739 articles were found eligible, including different tumour types. Prevalence of mutations in the KRAS gene ranged between 5.34 and 58.8% in ovarian cancer. Two studies showed a significant correlation between KRAS mutations and an improved disease free- and overall survival. Clinical data were available for 17 of our patients, mostly cases of endometrial carcinomas. KRAS, PIK3CA, CTNNB1, and TP53 were the most frequently mutated genes in endometrial carcinomas, and PTEN and CTNNB1 correlated with a higher FIGO stage. Conclusion: In the ovary KRAS mutation is associated with type I ovarian tumours (low-grade serous, mucinous, endometrioid, and clear-cell) and may seem to have a more favourable prognosis. The prognostic value of TP53 is still controversial. In endometrial tumours, PTEN shows a positive correlation with better prognosis. PIK3CA may have a correlation with poorer prognosis. CTNNB1 mutations in endometrial carcinomas could predict a worse prognosis

    Formalin-Fixed, Paraffin-Embedded–Targeted Locus Capture:A Next-Generation Sequencing Technology for Accurate DNA-Based Gene Fusion Detection in Bone and Soft Tissue Tumors

    Get PDF
    Chromosomal rearrangements are important drivers in cancer, and their robust detection is essential for diagnosis, prognosis, and treatment selection, particularly for bone and soft tissue tumors. Current diagnostic methods are hindered by limitations, including difficulties with multiplexing targets and poor quality of RNA. A novel targeted DNA-based next-generation sequencing method, formalin-fixed, paraffin-embedded–targeted locus capture (FFPE-TLC), has shown advantages over current diagnostic methods when applied on FFPE lymphomas, including the ability to detect novel rearrangements. We evaluated the utility of FFPE-TLC in bone and soft tissue tumor diagnostics. FFPE-TLC sequencing was successfully applied on noncalcified and decalcified FFPE samples (n = 44) and control samples (n = 19). In total, 58 rearrangements were identified in 40 FFPE tumor samples, including three previously negative samples, and none was identified in the FFPE control samples. In all five discordant cases, FFPE-TLC could identify gene fusions where other methods had failed due to either detection limits or poor sample quality. FFPE-TLC achieved a high specificity and sensitivity (no false positives and negatives). These results indicate that FFPE-TLC is applicable in cancer diagnostics to simultaneously analyze many genes for their involvement in gene fusions. Similar to the observation in lymphomas, FFPE-TLC is a good DNA-based alternative to the conventional methods for detection of rearrangements in bone and soft tissue tumors.</p

    Promoter hypermethylation in ductal carcinoma in situ of the male breast

    No full text
    Ductal carcinoma in situ (DCIS) of the male breast is very rare and has hardly been studied molecularly. In males, we compared methylation status of 25 breast cancer-related genes in pure DCIS (n = 18) and invasive breast carcinoma (IBC) with adjacent DCIS (DCIS-AIC) (n = 44) using methylation-specific multiplex ligation-dependent probe amplification. Results were compared to female breast cancer (BC). There were no significant differences in methylation features between male pure DCIS, DCIS-AIC and IBC after correction for multiple comparisons. In paired analysis of IBC and adjacent DCIS, CADM1 showed a significantly higher absolute methylation percentage in DCIS (P = 0.002). In cluster analysis, two clusters stood out with respectively infrequent and frequent methylation (GATA5, KLLN, PAX6, PAX5, CDH13, MSH6 and WT1 were frequently methylated). Compared to female DCIS, methylation was in general much less common in male DCIS, especially for VHL, ESR1, CDKN2A, CD44, CHFR, BRCA2, RB1 and STK11. In contrast, THBS1 and GATA5 were more frequently methylated in male DCIS. In conclusion, there is frequent methylation of GATA5, KLLN, PAX6, PAX5, CDH13, MSH6 and WT1 in male DCIS. Since there was little change in the methylation status for the studied genes from pure male DCIS to DCIS-AIC and IBC, methylation of these seven genes is more likely to occur early in male breast carcinogenesis. Based on the current markers male DCIS seems to be an epigenetically more advanced precursor of male BC, although in comparison to its female counterpart it appears that fewer loci harbor methylation, pointing to differences between male and female breast carcinogenesis with regard to the studied loci
    corecore