1,853 research outputs found

    How Do We Treat Children with Anterior Cutaneous Nerve Entrapment Syndrome and Is the Biopsychosocial Model Also Being Applied? A Scoping Review

    Get PDF
    Background: Evidence-based guidelines for managing anterior cutaneous nerve entrapment syndrome (ACNES) in children are absent. The primary aim of this review was to scrutinize the evidence supporting currently used treatment interventions. In accordance with the World Health Organization (WHO) guidelines for managing chronic pain in children, these patients and their families and caregivers should be treated within the context of the biopsychosocial model; pain should not be treated purely as a biomedical problem. Therefore, our second aim was to evaluate whether these interventions are applied within the context of the biopsychosocial model, utilizing an inter- or multidisciplinary approach. Materials and Methods: A scoping review of the literature was conducted to explore treatment strategies for ACNES in children. To ensure a comprehensive overview of published literature on this topic, the search was not restricted based on study type. Two reviewers independently assessed titles and abstracts. After excluding records unrelated to children, full texts were screened for inclusion. Any discrepancies in judgement were resolved through discussion with a third reviewer. Results: Out of 35 relevant titles, 22 were included in this review. Only 4 articles provided information on long-term outcomes. The overall quality of the review was deemed low. The majority of reports did not address treatment or education within the psychological and social domains. A structural qualitative analysis was not feasible due to the substantial heterogeneity of the data. Conclusion: The evidence supporting current treatment strategies in children with ACNES is of low quality. More research is needed to establish an evidence-based treatment algorithm for patients with this challenging pain problem. In line with the WHO recommendation, greater emphasis should be placed on a biopsychosocial approach. The ultimate goal should be the development of a generic treatment algorithm outlining an approach to ACNES applicable to all professionals involved.</p

    Pain during the first year after scoliosis surgery in adolescents, an exploratory, prospective cohort study

    Get PDF
    Objective: Approximately 50% of adolescents who have undergone scoliosis surgery still experience severe pain one year postoperatively. We explored the postoperative pain trajectory and the potential value of preoperative Thermal Quantitative Sensory Testing (T-QST) as predictor of chronic postsurgical pain after scoliosis surgery. Design: Single-center prospective cohort study in adolescents undergoing scoliosis surgery. Outcomes: Prevalence of chronic postsurgical pain (CPSP) one year after scoliosis surgery and postsurgical pain course during this year. The need for rescue medication and the relationship between pre-operative T-QST, acute pain and CPSP. Results: Thirty-nine patients (mean age 13.9 years; SD 1.9 years) completed the study. One year postoperatively, ten patients (26%) self-reported pain [numeric rating scale (NRS) score ≥ 4]) when moving and two (5%) when in rest. Four of these patients (10.3%) experienced neuropathic pain. The pre-operative cold pain threshold was lower (p = 0.002) in patients with CPSP at 12 months. Preoperative cold and heat pain thresholds were correlated with the number of moderate or severe pain reports (NRS ≥ 4) in the first week postoperatively (r -.426; p = 0.009 and r.392; p = 0.016, respectively). Conclusions: One year after scoliosis surgery, a significant part of patients (26%) still reported pain, some with neuropathic characteristics. Better diagnosis and treatment is needed; our study suggests that T-QST could be further explored to better understand and treat children with this negative outcome.</p

    Pain during the first year after scoliosis surgery in adolescents, an exploratory, prospective cohort study

    Get PDF
    Objective: Approximately 50% of adolescents who have undergone scoliosis surgery still experience severe pain one year postoperatively. We explored the postoperative pain trajectory and the potential value of preoperative Thermal Quantitative Sensory Testing (T-QST) as predictor of chronic postsurgical pain after scoliosis surgery. Design: Single-center prospective cohort study in adolescents undergoing scoliosis surgery. Outcomes: Prevalence of chronic postsurgical pain (CPSP) one year after scoliosis surgery and postsurgical pain course during this year. The need for rescue medication and the relationship between pre-operative T-QST, acute pain and CPSP. Results: Thirty-nine patients (mean age 13.9 years; SD 1.9 years) completed the study. One year postoperatively, ten patients (26%) self-reported pain [numeric rating scale (NRS) score ≥ 4]) when moving and two (5%) when in rest. Four of these patients (10.3%) experienced neuropathic pain. The pre-operative cold pain threshold was lower (p = 0.002) in patients with CPSP at 12 months. Preoperative cold and heat pain thresholds were correlated with the number of moderate or severe pain reports (NRS ≥ 4) in the first week postoperatively (r -.426; p = 0.009 and r.392; p = 0.016, respectively). Conclusions: One year after scoliosis surgery, a significant part of patients (26%) still reported pain, some with neuropathic characteristics. Better diagnosis and treatment is needed; our study suggests that T-QST could be further explored to better understand and treat children with this negative outcome.</p

    An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation

    Get PDF
    To better understand and characterize current uncertainties in the important observational constraint of climate models of aerosol optical depth (AOD), we evaluate and intercompare 14 satellite products, representing nine different retrieval algorithm families using observations from five different sensors on six different platforms. The satellite products (super-observations consisting of 1 degrees x 1 degrees daily aggregated retrievals drawn from the years 2006, 2008 and 2010) are evaluated with AErosol RObotic NETwork (AERONET) and Maritime Aerosol Network (MAN) data. Results show that different products exhibit different regionally varying biases (both under- and overestimates) that may reach +/- 50 %, although a typical bias would be 15 %-25 % (depending on the product). In addition to these biases, the products exhibit random errors that can be 1.6 to 3 times as large. Most products show similar performance, although there are a few exceptions with either larger biases or larger random errors. The intercomparison of satellite products extends this analysis and provides spatial context to it. In particular, we show that aggregated satellite AOD agrees much better than the spatial coverage (often driven by cloud masks) within the 1 degrees x 1 degrees grid cells. Up to similar to 50 % of the difference between satellite AOD is attributed to cloud contamination. The diversity in AOD products shows clear spatial patterns and varies from 10 % (parts of the ocean) to 100 % (central Asia and Australia). More importantly, we show that the diversity may be used as an indication of AOD uncertainty, at least for the better performing products. This provides modellers with a global map of expected AOD uncertainty in satellite products, allows assessment of products away from AERONET sites, can provide guidance for future AERONET locations and offers suggestions for product improvements. We account for statistical and sampling noise in our analyses. Sampling noise, variations due to the evaluation of different subsets of the data, causes important changes in error metrics. The consequences of this noise term for product evaluation are discussed

    Swallowing dysfunction in cancer patients

    Get PDF
    Purpose Dysphagia (swallowing dysfunction) is a debilitating, depressing, and potentially life-threatening complication in cancer patients that is likely underreported. The present paper is aimed to review relevant dysphagia literature between 1990 and 2010 with a focus on assessment tools, prevalence, complications, and impact on quality of life in patients with a variety of different cancers, particularly in those treated with curative chemoradiation for head and neck cancer. Methods The literature search was limited to the English language and included both MEDLINE/PubMed and EMBASE. The search focused on papers reporting dysphagia as a side effect of cancer and cancer therapy. We identified relevant literature through the primary literature search and by articles identified in references. Results A wide range of assessment tools for dysphagia was identified. Dysphagia is related to a number of factors such as direct impact of the tumor, cancer resection, chemotherapy, and radiotherapy and to newer therapies such as epidermal growth factor receptor inhibitors. Concomitant oral complications such as xerostomia may exacerbate subjective dysphagia. Most literature focuses on head and neck cancer, but dysphagia is also common in other types of cancer. Conclusions Swallowing impairment is a clinically relevant acute and long-term complication in patients with a wide variety of cancers. More prospective studies on the course of dysphagia and impact on quality of life from baseline to long-term follow-up after various treatment modalities, including targeted therapies, are needed

    Aerosol retrieval experiments in the ESA Aerosol_cci project

    Get PDF
    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010–2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer observations for the different versions of each algorithm globally (land and coastal) and for three regions with different aerosol regimes. The analysis allowed for an assessment of sensitivities of all algorithms, which helped define the best algorithm versions for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol-type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR. It is noted that all these observations are mostly consistent for all five analyses (global land, global coastal, three regional), which can be understood well, since the set of aerosol components defined in Sect. 3.1 was explicitly designed to cover different global aerosol regimes (with low and high absorption fine mode, sea salt and dust)

    Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis

    Get PDF
    Satellite data are increasingly used to provide observation-based estimates of the effects of aerosols on climate. The Aerosol-cci project, part of the European Space Agency's Climate Change Initiative (CCI), was designed to provide essential climate variables for aerosols from satellite data. Eight algorithms, developed for the retrieval of aerosol properties using data from AATSR (4), MERIS (3) and POLDER, were evaluated to determine their suitability for climate studies. The primary result from each of these algorithms is the aerosol optical depth (AOD) at several wavelengths, together with the Ångström exponent (AE) which describes the spectral variation of the AOD for a given wavelength pair. Other aerosol parameters which are possibly retrieved from satellite observations are not considered in this paper. The AOD and AE (AE only for Level 2) were evaluated against independent collocated observations from the ground-based AERONET sun photometer network and against “reference” satellite data provided by MODIS and MISR. Tools used for the evaluation were developed for daily products as produced by the retrieval with a spatial resolution of 10 × 10 km2 (Level 2) and daily or monthly aggregates (Level 3). These tools include statistics for L2 and L3 products compared with AERONET, as well as scoring based on spatial and temporal correlations. In this paper we describe their use in a round robin (RR) evaluation of four months of data, one month for each season in 2008. The amount of data was restricted to only four months because of the large effort made to improve the algorithms, and to evaluate the improvement and current status, before larger data sets will be processed. Evaluation criteria are discussed. Results presented show the current status of the European aerosol algorithms in comparison to both AERONET and MODIS and MISR data. The comparison leads to a preliminary conclusion that the scores are similar, including those for the references, but the coverage of AATSR needs to be enhanced and further improvements are possible for most algorithms. None of the algorithms, including the references, outperforms all others everywhere. AATSR data can be used for the retrieval of AOD and AE over land and ocean. PARASOL and one of the MERIS algorithms have been evaluated over ocean only and both algorithms provide good results
    corecore