22 research outputs found

    On the consistency of universally non-minimally coupled f(R,T,RμνTμν)f(R,T,R_{\mu\nu}T^{\mu\nu}) theories

    Full text link
    We discuss the consistency of a recently proposed class of theories described by an arbitrary function of the Ricci scalar, the trace of the energy-momentum tensor and the contraction of the Ricci tensor with the energy-momentum tensor. We briefly discuss the limitations of including the energy-momentum tensor in the action, as it is a non fundamental quantity, but a quantity that should be derived from the action. The fact that theories containing non-linear contractions of the Ricci tensor usually leads to the presence of pathologies associated with higher-order equations of motion will be shown to constrain the stability of this class of theories. We provide a general framework and show that the conformal mode for these theories generally has higher-order equations of motion and that non-minimal couplings to the matter fields usually lead to higher-order equations of motion. In order to illustrate such limitations we explicitly study the cases of a canonical scalar field, a K-essence field and a massive vector field. Whereas for the scalar field cases it is possible to find healthy theories, for the vector field case the presence of instabilities is unavoidable.Comment: Minor changes, version published matching Phys. Rev. D 91 (2015) 104003. 15 pages, no figure

    Birkhoff's theorem for stable torsion theories

    Get PDF
    We present a novel approach to establish the Birkhoff's theorem validity in the so-called quadratic Poincare Gauge theories of gravity. By obtaining the field equations via the Palatini formalism, we find paradigmatic scenarios where the theorem applies neatly. For more general and physically relevant situations, a suitable decomposition of the torsion tensor also allows us to establish the validity of the theorem. Our analysis shows rigorously how for all stable cases under consideration, the only solution of the vacuum field equations is a torsionless Schwarzschild spacetime, although it is possible to find non-Schwarzschild metrics in the realm of unstable Lagrangians. Finally, we study the weakened formulation of the Birkhoff's theorem where an asymptotically flat metric is assumed, showing that the theorem also holds

    On tidal forces in f(R) theories of gravity

    Get PDF
    Despite the extraordinary attention that modified gravity theories have attracted over the past decade, the geodesic deviation equation in this context has not received proper formulation thus far. This equation provides an elegant way to investigate the timelike, null and spacelike structure of spacetime geometries. In this investigation we provide the full derivation of this equation in situations where General Relativity has been extended in Robertson-Walker background spacetimes. We find that for null geodesics the contribution arising from the geometrical new terms is in general non-zero. Finally we apply the results to a well known class of f(R) theories, compare the results with General Relativity predictions and obtain the equivalent area distance relation.Comment: 9 pages, 2 figure
    corecore