4 research outputs found
Exploring persuasive technology in the context of health and wellbeing at work
We are not able to imagine life without technology. We use technology for almost every task in our daily life and also in the work setting, technology is everywhere around us. Developments in ICT have brought about many changes in work, and these changes will continue as technology evolves. In her thesis, Elsbeth de Korte explores the potential of persuasive technology to improve health and wellbeing at work. Persuasive technology is designed to change attitudes or behaviors of users through persuasion and social influence and without coercion. With apps, sensors and data, behavior, physical and mental activity and bodily functions can be monitored. Smart algorithms are used to provide active feedback to the user, to help them to achieve their goals. Persuasive technology shows real potential to drive improvements in working life, to reduce health risks or to better manage risk factors. However, can we trust persuasive technology? On which theories, models or standards do they base their feedback and recommendations? Are they effective? Who is actually profiting from persuasive technology? These questions need to be answered to explore how, where and for whom persuasive technology can be meaningfully implemented.Applied Ergonomics and Desig
Evaluating an mHealth App for Health and Well-Being at Work: Mixed-Method Qualitative Study
Background: To improve workers’ health and well-being, workplace interventions have been developed, but utilization and reach are unsatisfactory, and effects are small. In recent years, new approaches such as mobile health (mHealth) apps are being developed, but the evidence base is poor. Research is needed to examine its potential and to assess when, where, and for whom mHealth is efficacious in the occupational setting. To develop interventions for workers that actually will be adopted, insight into user satisfaction and technology acceptance is necessary. For this purpose, various qualitative evaluation methods are available.Objective: The objectives of this study were to gain insight into (1) the opinions and experiences of employees and experts on drivers and barriers using an mHealth app in the working context and (2) the added value of three different qualitative methods that are available to evaluate mHealth apps in a working context: interviews with employees, focus groups with employees, and a focus group with experts.Methods: Employees of a high-tech company and experts were asked to use an mHealth app for at least 3 weeks before participating in a qualitative evaluation. Twenty-two employees participated in interviews, 15 employees participated in three focus groups, and 6 experts participated in one focus group. Two researchers independently coded, categorized, and analyzed all quotes yielded from these evaluation methods with a codebook using constructs from user satisfaction and technology acceptance theories.Results: Interviewing employees yielded 785 quotes, focus groups with employees yielded 266 quotes, and the focus group with experts yielded 132 quotes. Overall, participants muted enthusiasm about the app. Combined results from the three evaluation methods showed drivers and barriers for technology, user characteristics, context, privacy, and autonomy. A comparison between the three qualitative methods showed that issues revealed by experts only slightly overlapped with those expressed by employees. In addition, it was seen that the type of evaluation yielded different results.Conclusions: Findings from this study provide the following recommendations for organizations that are planning to provide mHealth apps to their workers and for developers of mHealth apps: (1) system performance influences adoption and adherence, (2) relevancy and benefits of the mHealth app should be clear to the user and should address users’ characteristics, (3) app should take into account the work context, and (4) employees should be alerted to their right to privacy and use of personal data. Furthermore, a qualitative evaluation of mHealth apps in a work setting might benefit from combining more than one method. Factors to consider when selecting a qualitative research method are the design, development stage, and implementation of the app; the working context in which it is being used; employees’ mental models; practicability; resources; and skills required of experts and users.Applied Ergonomics and Desig
Behavior Change Techniques in mHealth Apps for the Mental and Physical Health of Employees: Systematic Assessment
Background: Employees remain at risk of developing physical and mental health problems. To improve the lifestyle, health, and productivity many workplace interventions have been developed. However, not all of these interventions are effective. Mobile and wireless technology to support health behavior change (mobile health [mHealth] apps) is a promising, but relatively new domain for the occupational setting. Research on mHealth apps for the mental and physical health of employees is scarce. Interventions are more likely to be useful if they are rooted in health behavior change theory. Evaluating the presence of specific combinations of behavior change techniques (BCTs) in mHealth apps might be used as an indicator of potential quality and effectiveness. Objective: The aim of this study was to assess whether mHealth apps for the mental and physical health of employees incorporate BCTs and, if so, which BCTs can be identified and which combinations of BCTs are present. Methods: An assessment was made of apps aiming to reduce the risk of physical and psychosocial work demands and to promote a healthy lifestyle for employees. A systematic search was performed in iTunes and Google Play. Forty-five apps were screened and downloaded. BCTs were identified using a taxonomy applied in similar reviews. The mean and ranges were calculated. Results: On average, the apps included 7 of the 26 BCTs (range 2-18). Techniques such as “provide feedback on performance,” “provide information about behavior-health link,” and “provide instruction” were used most frequently. Techniques that were used Least were “relapse prevention,” “prompt self-talk,” “use follow-up prompts,” and “provide information about others’ approval.” “Stress management,” “prompt identification as a role model,” and “agree on behavioral contract” were not used by any of the apps. The combination “provide information about behavior-health link” with “prompt intention formation” was found in 7/45 (16%) apps. The combination “provide information about behavior-health link” with “provide information on consequences,” and “use follow-up prompts” was found in 2 (4%) apps. These combinations indicated potential effectiveness. The Least potentially effective combination “provide feedback on performance” without “provide instruction” was found in 13 (29%) apps. Conclusions: Apps for the occupational setting might be substantially improved to increase potential since results showed a limited presence of BCTs in general, limited use of potentially successful combinations of BCTs in apps, and use of potentially unsuccessful combinations of BCTs. Increasing knowledge on the effectiveness of BCTs in apps might be used to develop guidelines for app developers and selection criteria for companies and individuals. Also, this might contribute to decreasing the burden of work-related diseases. To achieve this, app developers, health behavior change professionals, experts on physical and mental health, and end-users should collaborate when developing apps for the working context.Applied Ergonomics and Desig
Personalized support for well-being at work: an overview of the SWELL project
Recent advances in wearable sensor technology and smartphones enable simple and affordable collection of personal analytics. This paper reflects on the lessons learned in the SWELL project that addressed the design of user-centered ICT applications for self-management of vitality in the domain of knowledge workers. These workers often have a sedentary lifestyle and are susceptible to mental health effects due to a high workload. We present the sense–reason–act framework that is the basis of the SWELL approach and we provide an overview of the individual studies carried out in SWELL. In this paper, we revisit our work on reasoning: interpreting raw heterogeneous sensor data, and acting: providing personalized feedback to support behavioural change. We conclude that simple affordable sensors can be used to classify user behaviour and heath status in a physically non-intrusive way. The interpreted data can be used to inform personalized feedback strategies. Further longitudinal studies can now be initiated to assess the effectiveness of m-Health interventions using the SWELL methods.Applied Ergonomics and DesignInteractive Intelligenc