7 research outputs found

    Digital Twins for Wind Energy Conversion Systems: A Literature Review of Potential Modelling Techniques Focused on Model Fidelity and Computational Load

    No full text
    The Industry 4.0 concept of a Digital Twin will bring many advantages for wind energy conversion systems, e.g., in condition monitoring, predictive maintenance and the optimisation of control or design parameters. A virtual replica is at the heart of a digital twin. To construct a virtual replica, appropriate modelling techniques must be selected for the turbine components. These models must be chosen with the intended use case of the digital twin in mind, finding a proper balance between the model fidelity and computational load. This review article presents an overview of the recent literature on modelling techniques for turbine aerodynamics, structure and drivetrain mechanics, the permanent magnet synchronous generator, the power electronic converter and the pitch and yaw systems. For each component, a balanced overview is given of models with varying model fidelity and computational load, ranging from simplified lumped parameter models to advanced numerical Finite Element Method (FEM)-based models. The results of the literature review are presented graphically to aid the reader in the model selection process. Based on this review, a high-level structure of a digital twin is proposed together with a virtual replica with a minimum computational load. The concept of a multi-level hierarchical virtual replica is presented

    Digital Twins for Wind Energy Conversion Systems: A Literature Review of Potential Modelling Techniques Focused on Model Fidelity and Computational Load

    No full text
    The Industry 4.0 concept of a Digital Twin will bring many advantages for wind energy conversion systems, e.g., in condition monitoring, predictive maintenance and the optimisation of control or design parameters. A virtual replica is at the heart of a digital twin. To construct a virtual replica, appropriate modelling techniques must be selected for the turbine components. These models must be chosen with the intended use case of the digital twin in mind, finding a proper balance between the model fidelity and computational load. This review article presents an overview of the recent literature on modelling techniques for turbine aerodynamics, structure and drivetrain mechanics, the permanent magnet synchronous generator, the power electronic converter and the pitch and yaw systems. For each component, a balanced overview is given of models with varying model fidelity and computational load, ranging from simplified lumped parameter models to advanced numerical Finite Element Method (FEM)-based models. The results of the literature review are presented graphically to aid the reader in the model selection process. Based on this review, a high-level structure of a digital twin is proposed together with a virtual replica with a minimum computational load. The concept of a multi-level hierarchical virtual replica is presentedOffshore and Dredging Engineerin

    An adjusted weight metric to quantify flexibility available in conventional generators for low carbon power systems

    Get PDF
    With the increasing shares of intermittent renewable sources in the grid, it becomes increasingly essential to quantify the requirements of the power systems flexibility. In this article, an adjusted weight flexibility metric (AWFM) is developed to quantify the available flexibility within individual generators as well as within the overall system. The developed metric is useful for power system operators who require a fast, simple, and offline metric. This provides a more realistic and accurate quantification of the available technical flexibility without performing time-consuming multi-temporal simulations. Another interesting feature is that it can be used to facilitate scenario comparisons. This is achieved by developing a new framework to assure the consistency of the metric and by proposing a new adjusted weighting mechanism based on correlation analysis and analytic hierarchy process (AHP). A new ranking approach based on flexibility was also proposed to increase the share of the renewable energy sources (RESs). The proposed framework was tested on the IEEE RTS-96 test-system. The results demonstrate the consistency of the AWFM. Moreover, the results show that the proposed metric is adaptive as it automatically adjusts the flexibility index with the addition or removal of generators. The new ranking approach proved its ability to increase the wind share from 28% to 37.2% within the test system. The AWFM can be a valuable contribution to the field of flexibility for its ability to provide systematic formulation for the precise analysis and accurate assessment of inherent technical flexibility for a low carbon power syste
    corecore