5 research outputs found

    HLA Immunogenotype Determines Persistent Human Papillomavirus Virus Infection in HIV-Infected Patients Receiving Antiretroviral Treatment

    Get PDF
    A proportion of human immunodeficiency virus (HIV)–infected patients develop persistent, stigmatizing human papillomavirus (HPV)–related cutaneous and genital warts and anogenital (pre)cancer. This is the first study to investigate immunogenetic variations that might account for HPV susceptibility and the largest to date to categorize the HPV types associated with cutaneous warts in HIV-positive patients. The HLA class I and II allele distribution was analyzed in 49 antiretroviral (ART)–treated HIV-positive patients with persistent warts, 42 noninfected controls, and 46 HIV-positive controls. The allele HLA-B*44 was more frequently identified in HIV-positive patients with warts (P = .004); a susceptible haplotype (HLA-B*44, HLA-C*05; P = .001) and protective genes (HLA-DQB1*06; P = .03) may also contribute. Cutaneous wart biopsy specimens from HIV-positive patients harbored common wart types HPV27/57, the unusual wart type HPV7, and an excess of Betapapillomavirus types (P = .002), compared with wart specimens from noninfected controls. These findings suggest that HLA testing might assist in stratifying those patients in whom vaccination should be recommended

    Discovery of a New Human Polyomavirus Associated with Trichodysplasia Spinulosa in an Immunocompromized Patient

    Get PDF
    The Polyomaviridae constitute a family of small DNA viruses infecting a variety of hosts. In humans, polyomaviruses can cause infections of the central nervous system, urinary tract, skin, and possibly the respiratory tract. Here we report the identification of a new human polyomavirus in plucked facial spines of a heart transplant patient with trichodysplasia spinulosa, a rare skin disease exclusively seen in immunocompromized patients. The trichodysplasia spinulosa-associated polyomavirus (TSV) genome was amplified through rolling-circle amplification and consists of a 5232-nucleotide circular DNA organized similarly to known polyomaviruses. Two putative “early” (small and large T antigen) and three putative “late” (VP1, VP2, VP3) genes were identified. The TSV large T antigen contains several domains (e.g. J-domain) and motifs (e.g. HPDKGG, pRb family-binding, zinc finger) described for other polyomaviruses and potentially involved in cellular transformation. Phylogenetic analysis revealed a close relationship of TSV with the Bornean orangutan polyomavirus and, more distantly, the Merkel cell polyomavirus that is found integrated in Merkel cell carcinomas of the skin. The presence of TSV in the affected patient's skin was confirmed by newly designed quantitative TSV-specific PCR, indicative of a viral load of 105 copies per cell. After topical cidofovir treatment, the lesions largely resolved coinciding with a reduction in TSV load. PCR screening demonstrated a 4% prevalence of TSV in an unrelated group of immunosuppressed transplant recipients without apparent disease. In conclusion, a new human polyomavirus was discovered and identified as the possible cause of trichodysplasia spinulosa in immunocompromized patients. The presence of TSV also in clinically unaffected individuals suggests frequent virus transmission causing subclinical, probably latent infections. Further studies have to reveal the impact of TSV infection in relation to other populations and diseases

    Human papillomavirus and post-transplant cutaneous squamous-cell carcinoma: a multicenter, prospective cohort study

    Get PDF
    Organ transplant recipients (OTRs) have a 100‐fold increased risk of cutaneous squamous cell carcinoma (cSCC). We prospectively evaluated the association between β genus human papillomaviruses (βPV) and keratinocyte carcinoma in OTRs. Two OTR cohorts without cSCC were assembled: cohort 1 was transplanted in 2003‐2006 (n = 274) and cohort 2 was transplanted in 1986‐2002 (n = 352). Participants were followed until death or cessation of follow‐up in 2016. βPV infection was assessed in eyebrow hair by using polymerase chain reaction–based methods. βPV IgG seroresponses were determined with multiplex serology. A competing risk model with delayed entry was used to estimate cumulative incidence of histologically proven cSCC and the effect of βPV by using a multivariable Cox regression model. Results are reported as adjusted hazard ratios (HRs). OTRs with 5 or more different βPV types in eyebrow hair had 1.7 times the risk of cSCC vs OTRs with 0 to 4 different types (HR 1.7, 95% confidence interval 1.1‐2.6). A similar risk was seen with high βPV loads (HR 1.8, 95% confidence interval 1.2‐2.8). No significant associations were seen between serum antibodies and cSCC or between βPV and basal cell carcinoma. The diversity and load of βPV types in eyebrow hair are associated with cSCC risk in OTRs, providing evidence that βPV is associated with cSCC carcinogenesis and may present a target for future preventive strategies
    corecore