2,699 research outputs found

    Genome2D: a visualization tool for the rapid analysis of bacterial transcriptome data

    Get PDF
    Genome2D is a Windows-based software tool for visualization of bacterial transcriptome and customized datasets on linear chromosome maps constructed from annotated genome sequences. Genome2D facilitates the analysis of transcriptome data by using different color ranges to depict differences in gene-expression levels on a genome map. Such output format enables visual inspection of the transcriptome data, and will quickly reveal transcriptional units, without prior knowledge of expression level cutoff values. The compiled version of Genome2D is freely available for academic or non-profit use from

    Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis

    Get PDF
    Background: Methylotrophic yeast species (e.g. Hansenula polymorpha, Pichia pastoris) can grow on methanol as sole source of carbon and energy. These organisms are important cell factories for the production of recombinant proteins, but are also used in fundamental research as model organisms to study peroxisome biology. During exponential growth on glucose, cells of H. polymorpha typically contain a single, small peroxisome that is redundant for growth while on methanol multiple, enlarged peroxisomes are present. These organelles are crucial to support growth on methanol, as they contain key enzymes of methanol metabolism. In this study, changes in the transcriptional profiles during adaptation of H. polymorpha cells from glucose- to methanol-containing media were investigated using DNA-microarray analyses. Results: Two hours after the shift of cells from glucose to methanol nearly 20% (1184 genes) of the approximately 6000 annotated H. polymorpha genes were significantly upregulated with at least a two-fold differential expression. Highest upregulation (> 300-fold) was observed for the genes encoding the transcription factor Mpp1 and formate dehydrogenase, an enzyme of the methanol dissimilation pathway. Upregulated genes also included genes encoding other enzymes of methanol metabolism as well as of peroxisomal b-oxidation. A moderate increase in transcriptional levels (up to 4-fold) was observed for several PEX genes, which are involved in peroxisome biogenesis. Only PEX11 and PEX32 were higher upregulated. In addition, an increase was observed in expression of the several ATG genes, which encode proteins involved in autophagy and autophagy processes. The strongest upregulation was observed for ATG8 and ATG11. Approximately 20% (1246 genes) of the genes were downregulated. These included glycolytic genes as well as genes involved in transcription and translation. Conclusion: Transcriptional profiling of H. polymorpha cells shifted from glucose to methanol showed the expected downregulation of glycolytic genes together with upregulation of the methanol utilisation pathway. This serves as a confirmation and validation of the array data obtained. Consistent with this, also various PEX genes were upregulated. The strong upregulation of ATG genes is possibly due to induction of autophagy processes related to remodeling of the cell architecture required to support growth on methanol. These processes may also be responsible for the enhanced peroxisomal b oxidation, as autophagy leads to recycling of membrane lipids. The prominent downregulation of transcription and translation may be explained by the reduced growth rate on methanol (td glucose 1 h vs td methanol 4.5 h).Applied Science

    The long-term course of shoulder complaints:a prospective study in general practice

    Get PDF
    Objective. Assessment of the long-term course of shoulder complaints in patients in general practice with special focus on changes in diagnostic category and fluctuations in the severity of the complaints. Design. Prospective descriptive study. Setting. Four general practices in The Netherlands. Method. All patients (101) with shoulder complaints seen in a 5 month period were included. Assessment took place 26 weeks and 12-18 months after inclusion in the study with a pain questionnaire and a physical examination. Results. A total of 51% of the patients experienced (mostly recurrent) complaints after 26 weeks and 41% after 12-18 months. Diagnostic changes were found over the course of time, mostly from synovial disorders towards functional disorders of the structures of the shoulder girdle, but also the other way round. Although 52 of the 101 patients experienced complaints in week 26, 62% of those patients considered themselves 'cured'. After 12-18 months, 51% of the 39 patients experiencing complaints felt 'cured'. Conclusion. Many patients seen with shoulder complaints in general practice have recurrent complaints. The nature of these complaints varies considerably over the course of time, leading to changes in diagnostic category. Because of the fluctuating severity of the complaints over time, feeling 'cured' or not 'cured' is also subject to change over time

    Ultrasonic characterization of ultrasound contrast agents

    Get PDF
    The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at the subharmonic, ultraharmonic and higher harmonic frequencies. This harmonic energy is exploited for contrast enhanced imaging to discriminate the contrast agent from surrounding tissue. The amount of harmonic energy that the contrast agent bubbles generate depends on the bubble characteristics in combination with the ultrasound field applied. This paper summarizes different strategies to characterize the UCAs. These strategies can be divided into acoustic and optical methods, which focus on the linear or nonlinear responses of the contrast agent bubbles. In addition, the characteristics of individual bubbles can be determined or the bubbles can be examined when they are part of a population. Recently, especially optical methods have proven their value to study individual bubbles. This paper concludes by showing some examples of optically observed typical behavior of contrast bubbles in ultrasound fields

    Monitoring cardiac fibrosis: a technical challenge

    Get PDF
    The heart contains a collagen network that contributes to the contractility of the heart and provides cardiac strength. In cardiac diseases, an increase in collagen deposition is often observed. This fibrosis formation causes systolic and diastolic dysfunction, and plays a major role in the arrythmogenic substrate. Therefore, accurate detection of cardiac fibrosis and its progression is of clinical importance with regard to diagnostics and therapy for patients with cardiac disease. To evaluate cardiac collagen deposition, both invasive and non-invasive techniques are used. In this review the different techniques that are currently used in clinical and experimental setting are summarised, and the advantages and disadvantages of these techniques are discussed

    The complexities of breast cancer desmoplasia

    Get PDF
    The stromal, or 'desmoplastic', responses seen histologically in primary breast carcinomas can vary from being predominantly cellular (fibroblasts/myofibroblasts) with little collagen to being a dense acellular tissue. The mechanisms underlying the stromal response are complex; paracrine activation of myofibroblasts by growth factors is important but the contribution of cytokines/chemokines should not be ignored. A recent xenograft study has proposed that platelet-derived growth factor (PDGF) is the initiator of the desmoplastic response, but this has not been confirmed by (limited) analyses in vivo. Further studies are required to elaborate the mechanisms of the desmoplastic response, to determine its role in breast cancer progression and whether it is the same for all carcinomas
    corecore