22 research outputs found

    Population pharmacokinetics of the von Willebrand factor-factor VIII interaction in patients with von Willebrand disease

    Get PDF
    Recent studies have reported that patients with von Willebrand disease treated perioperatively with a von Willebrand factor (VWF)/factor VIII (FVIII) concentrate with a ratio of 2.4:1 (Humate P/Haemate P) often present with VWF and/or FVIII levels outside of prespecified target levels necessary to prevent bleeding. Pharmacokinetic (PK)-guided dosing may resolve this problem. As clinical guidelines increasingly recommend aiming for certain target levels of both VWF and FVIII, application of an integrated population PK model describing both VWF activity (VWF:Act) and FVIII levels may improve dosing and quality of care. In total, 695 VWF:Act and 894 FVIII level measurements from 118 patients (174 surgeries) who were treated perioperatively with the VWF/FVIII concentrate were used to develop this population PK model using nonlinear mixed-effects modeling. VWF:Act and FVIII levels were analyzed simultaneously using a turnover model. The protective effect of VWF:Act on FVIII clearance was described with an inhibitory maximum effect function. An average perioperative VWF:Act level of 1.23 IU/mL decreased FVIII clearance from 460 mL/h to 264 mL/h, and increased FVIII half-life from 6.6 to 11.4 hours. Clearly, in the presence of VWF, FVIII clearance decreased with a concomitant increase of FVIII half-life, clarifying the higher FVIII levels observed after repetitive dosing with this concentrate. VWF:Act and FVIII levels during perioperative treatment were described adequately by this newly developed integrated population PK model. Clinical application of this model may facilitate more accurate targeting of VWF:Act and FVIII levels during perioperative treatment with this specific VWF/FVIII concentrate (Humate P/Haemate P).Thrombosis and Hemostasi

    Population Pharmacokinetic Modeling of von Willebrand Factor Activity in von Willebrand Disease Patients after Desmopressin Administration

    No full text
    Objective Most von Willebrand disease (VWD) patients can be treated with desmopressin during bleeding or surgery. Large interpatient variability is observed in von Willebrand factor (VWF) activity levels after desmopressin administration. The aim of this study was to develop a pharmacokinetic (PK) model to describe, quantify, and explain this variability. Methods Patients with either VWD or low VWF, receiving an intravenous desmopressin test dose of 0.3 ÎĽg kg -1, were included. A PK model was derived on the basis of the individual time profiles of VWF activity. Since no VWF was administered, the VWF dose was arbitrarily set to unity. Interpatient variability in bioavailability (F), volume of distribution (V), and clearance (Cl) was estimated. Results The PK model was developed using 951 VWF activity level measurements from 207 patients diagnosed with a VWD type. Median age was 28 years (range: 5-76), median predose VWF activity was 0.37 IU/mL (range: 0.06-1.13), and median VWF activity response at peak level was 0.64 IU/mL (range: 0.04-4.04). The observed PK profiles were best described using a one-compartment model with allometric scaling. While F increased with age, Cl was dependent on VWD type and sex. Inclusion resulted in a drop in interpatient variability in F and Cl of 81.7 to 60.5% and 92.8 to 76.5%, respectively. Conclusion A PK model was developed, describing VWF activity versus time profile after desmopressin administration in patients with VWD or low VWF. Interpatient variability in response was quantified and partially explained. This model is a starting point toward more accurate prediction of desmopressin dosing effects in VWD

    Is pharmacokinetic-guided dosing of desmopressin and von Willebrand factor-containing concentrates in individuals with von Willebrand disease or low von Willebrand factor reliable and feasible? A protocol for a multicentre, non-randomised, open label cohort trial, the OPTI-CLOT: to WiN study

    Get PDF
    INTRODUCTION: Von Willebrand disease (VWD) is a bleeding disorder, caused by a deficiency or defect of von Willebrand factor (VWF). In case of medical procedures or bleeding, patients are treated with desmopressin and/or VWF-containing concentrates to increase plasma VWF and factor VIII (FVIII). However, in many cases these factor levels are outside the targeted range. Therefore, population pharmacokinetic (PK) models have been developed, which aim to quantify and explain intraindividual and interindividual differences in treatment response. These models enable calculation of individual PK parameters by Bayesian analysis, based on an individual desmopressin test or PK profile with a VWF-containing concentrate. Subsequently, the dose necessary for an individual to achieve coagulation factor target levels can be calculated. METHODS AND ANALYSIS: Primary aim of this study is to assess the predictive performance (the difference between predicted and measured von VWF activity and FVIII levels) of Bayesian forecasting using the developed population PK models in four different situations: (A) desmopressin testing (n≥30); (B) medical procedures (n=70; 30 receiving desmopressin, 30 receiving VWF-containing concentrate and 10 receiving a combination of both); (C) bleeding episodes (n=20; 10 receiving desmopressin and 10 receiving VWF-containing concentrate) and (D) prophylaxis with a VWF-containing concentrate (n=3 to 5). Individuals with all types of VWD and individuals with low VWF (VWF 0.30-0.60 IU/mL) will be included. Reliability and feasibility of PK-guided dosing will be tested by assessing predictive performance, treatment duration, haemostasis, patient satisfaction and physician satisfaction. ETHICS AND DISSEMINATION: The OPTI-CLOT:to WiN study was approved by the medical ethics committee of the Erasmus MC, University Medical Centre Rotterdam, the Netherlands. Results of the study will be communicated through publication in international scientific journals and presentation at (inter)national conferences. TRIAL REGISTRATION NUMBER: NL7212 (NTR7411); Pre-results, EudraCT 2018-001631-46

    One piece of the puzzle: Population pharmacokinetics of FVIII during perioperative Haemate P (R)/Humate P (R) treatment in von Willebrand disease patients

    Get PDF
    Introduction: Many patients with von Willebrand disease (VWD) are treated on demand with von Willebrand factor and factor VIII (FVIII) containing concentrates present with VWF and/or FVIII plasma levels outside set target levels. This carries a risk for bleeding and potentially for thrombosis. Development of a population pharmacokinetic (PK) model based on FVIII levels is a first step to more accurate on-demand perioperative dosing of this concentrate. Methods: Patients with VWD undergoing surgery in Academic Haemophilia Treatment Centers in the Netherlands between 2000 and 2018 treated with a FVIII/VWF plasma-derived concentrate (Haemate® P/Humate P®) were included in this study. Population PK modeling was based on measured FVIII levels using nonlinear mixed-effects modeling (NONMEM). Results: The population PK model was developed using 684 plasma FVIII measurements of 97 VWD patients undergoing 141 surgeries. Subsequently, the model was externally validated and reestimated with independent clinical data from 20 additional patients undergoing 31 surgeries and 208 plasma measurements of FVIII. The observed PK profiles were best described using a one-compartment model. Typical values for volume of distribution and clearance were 3.28 L/70 kg and 0.037 L/h/70 kg. Increased VWF activity, decreased physical status according to American Society of Anesthesiologists (ASA) classification (ASA class >2), and increased duration of surgery were associated with decreased FVIII clearance. Conclusion: This population PK model derived from real world data adequately describes FVIII levels following perioperative administration of the FVIII/VWF plasma-derived concentrate (Haemate® P/Humate P®) and will help to facilitate future dosing in VWD patients
    corecore