39 research outputs found

    Candidate genetic analysis of plasma high-density lipoprotein-cholesterol and severity of coronary atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasma level of high-density lipoprotein-cholesterol (HDL-C), a heritable trait, is an important determinant of susceptibility to atherosclerosis. Non-synonymous and regulatory single nucleotide polymorphisms (SNPs) in genes implicated in HDL-C synthesis and metabolism are likely to influence plasma HDL-C, apolipoprotein A-I (apo A-I) levels and severity of coronary atherosclerosis.</p> <p>Methods</p> <p>We genotyped 784 unrelated Caucasian individuals from two sets of populations (Lipoprotein and Coronary Atherosclerosis Study- LCAS, N = 333 and TexGen, N = 451) for 94 SNPs in 42 candidate genes by 5' nuclease assays. We tested the distribution of the phenotypes by the Shapiro-Wilk normality test. We used Box-Cox regression to analyze associations of the non-normally distributed phenotypes (plasma HDL-C and apo A-I levels) with the genotypes. We included sex, age, body mass index (BMI), diabetes mellitus (DM), and cigarette smoking as covariates. We calculated the q values as indicators of the false positive discovery rate (FDR).</p> <p>Results</p> <p>Plasma HDL-C levels were associated with sex (higher in females), BMI (inversely), smoking (lower in smokers), DM (lower in those with DM) and SNPs in <it>APOA5, APOC2</it>, <it>CETP, LPL </it>and <it>LIPC </it>(each q ≤0.01). Likewise, plasma apo A-I levels, available in the LCAS subset, were associated with SNPs in <it>CETP</it>, <it>APOA5</it>, and <it>APOC2 </it>as well as with BMI, sex and age (all q values ≤0.03). The <it>APOA5 </it>variant S19W was also associated with minimal lumen diameter (MLD) of coronary atherosclerotic lesions, a quantitative index of severity of coronary atherosclerosis (q = 0.018); mean number of coronary artery occlusions (p = 0.034) at the baseline and progression of coronary atherosclerosis, as indicated by the loss of MLD.</p> <p>Conclusion</p> <p>Putatively functional variants of <it>APOA2</it>, <it>APOA5, APOC2</it>, <it>CETP, LPL</it>, <it>LIPC </it>and <it>SOAT2 </it>are independent genetic determinants of plasma HDL-C levels. The non-synonymous S19W SNP in <it>APOA5 </it>is also an independent determinant of plasma apo A-I level, severity of coronary atherosclerosis and its progression.</p

    Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model

    Get PDF
    Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine

    Receptor Complementation and Mutagenesis Reveal SR-BI as an Essential HCV Entry Factor and Functionally Imply Its Intra- and Extra-Cellular Domains

    Get PDF
    HCV entry into cells is a multi-step and slow process. It is believed that the initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading to uptake and cellular penetration of HCV via low-pH endosomes. Several reports have indicated that HDL promotes HCV entry through interaction with SR-BI. This pathway remains largely elusive, although it was shown that HDL neither associates with HCV particles nor modulates HCV binding to SR-BI. In contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed indirectly because of lack of cells in which functional complementation assays with mutant receptors could be performed. Here we identified for the first time two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma cells allowed unambiguous investigation of human SR-BI functions during HCV entry. By expressing different SR-BI mutants in either cell line, our results revealed features of SR-BI intracellular domains that influence HCV infectivity without affecting receptor binding and stimulation of HCV entry induced by HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain that, by altering HCV binding, inhibit entry. Finally, we characterized alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results highlight specific SR-BI determinants required during HCV entry and physiological lipid transfer functions hijacked by HCV to favor infection

    The cholesterol ester transfer protein (CETP) TaqIB variant, HDL cholesterol levels, cardiovascular risk and the efficacy of pravastatin treatment – an individual patient meta-analisis of 13,677 subjects

    No full text
    Several studies have reported that the cholesteryl ester transfer protein (CETP) TaqIB gene polymorphism is associated with HDL cholesterol (HDL-C) levels and the risk of coronary artery disease (CAD), but the results are inconsistent. In addition, an interaction has been implicated between this genetic variant and pravastatin treatment, but this has not been confirmed. A meta-analysis was performed on individual patient data from 7 large, population-based studies (each >500 individuals) and 3 randomized, placebo-controlled, pravastatin trials. Linear and logistic regression models were used to assess the relation between TaqIB genotype and HDL-C levels and CAD risk. After adjustment for study, age, sex, smoking, body mass index (BMI), diabetes, LDL-C, use of alcohol, and prevalence of CAD, TaqIB genotype exhibited a highly significant association with HDL-C levels, such that B2B2 individuals had 0.11 mmol/L (0.10 to 0.12, P<0.0001) higher HDL-C levels than did B1B1 individuals. Second, after adjustment for study, sex, age, smoking, BMI, diabetes, systolic blood pressure, LDL-C, and use of alcohol, TaqIB genotype was significantly associated with the risk of CAD (odds ratio=0.78 [0.66 to 0.93]) in B2B2 individuals compared with B1B1 individuals (P for linearity=0.008). Additional adjustment for HDL-C levels rendered a loss of statistical significance (P=0.4). Last, no pharmacogenetic interaction between TaqIB genotype and pravastatin treatment could be demonstrated. The CETP TaqIB variant is firmly associated with HDL-C plasma levels and as a result, with the risk of CAD. Importantly, this CETP variant does not influence the response to pravastatin therap
    corecore