577 research outputs found

    Addressing the Majorana vs. Dirac Question with Neutrino Decays

    Full text link
    The Majorana versus Dirac nature of neutrinos remains an open question. This is due, in part, to the fact that virtually all the experimentally accessible neutrinos are ultra-relativistic. Noting that Majorana neutrinos can behave quite differently from Dirac ones when they are non-relativistic, we show that, at leading order, the angular distribution of the daughters in the decay of a heavy neutrino into a lighter one and a self-conjugate boson is isotropic in the parent's rest frame if the neutrinos are Majorana, independent of the parent's polarization. If the neutrinos are Dirac fermions, this is, in general, not the case. This result follows from CPT invariance and is independent of the details of the physics responsible for the decay. We explore the feasibility of using these angular distributions -- or, equivalently, the energy distributions of the daughters in the laboratory frame -- in order to address the Majorana versus Dirac nature of neutrinos if a fourth, heavier neutrino mass eigenstate reveals itself in the current or next-generation of high-energy colliders, intense meson facilities, or neutrino beam experiments.Comment: 11 pages, 3 figure

    The Physical Range of Majorana Neutrino Mixing Parameters

    Full text link
    If neutrinos are Majorana fermions, the lepton mixing parameter space consists of six mixing parameters: three mixing angles and three CP-odd phases. A related issue concerns the physical range of the mixing parameters. What values should these take so that all physically distinguishable mixing scenarios are realized? We present a detailed discussion of the lepton mixing parameter space in the case of two and three active neutrinos, and in the case of three active and N sterile neutrinos. We emphasize that this question, which has been a source of confusion even among "neutrino" physicists, is connected to an unambiguous definition of the neutrino mass eigenstates. We find that all Majorana phases can always be constrained to lie between 0 and pi, and that all mixing angles can be chosen positive and at most less than or equal to pi/2 provided the Dirac phases are allowed to vary between -pi and pi. We illustrate our results with several examples. Finally, we point out that, in the case of new flavor-changing neutrino interactions, the lepton mixing parameter space may need to be enlarged. We properly qualify this statement, and offer concrete examples.Comment: 16 pages, 2 .eps figures, references added, minor typos correcte

    Lepton Flavour Violation In Supersymmetric Models with Trilinear R-parity Violation

    Get PDF
    Supersymmetry with R-parity violation (RPV) provides an interesting framework for naturally accommodating small neutrino masses. Within this framework, we discuss the lepton-flavour violating (LFV) processes mu -> e gamma, mu -> eee, and mu -> e conversion in nuclei. We make a detailed study of the observables related to LFV in different RPV models, and compare them to the expectations of R-conserving supersymmetry with heavy right-handed neutrinos. We show that the predictions are vastly different and uniquely characterise each model, thus providing a powerful framework for experimentally distinguishing between different theories of LFV. Besides the obvious possibility of amplified tree-level generation of mu -> eee and mu -> e conversion in nuclei, we find that even in the case where these processes arise at the one-loop level, their rates are comparable to that of mu -> e gamma, in clear contrast to the predictions of R-conserving models. We conclude that in order to distinguish between the different models, such a combined study of all the LFV processes is necessary, and that measuring P-odd asymmetries in polarised mu -> eee can play a decisive role. We also comment on the intriguing possibility of RPV models yielding a large T-odd asymmetry in the decay of polarised mu -> eee
    • 

    corecore