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Abstract

Supersymmetry with R-parity violation (RPV) provides an inter-
esting framework for naturally accommodating small neutrino masses.
Within this framework, we discuss the lepton-flavour violating (LFV)
processes µ → eγ, µ → eee, and µ → e conversion in nuclei. We
make a detailed study of the observables related to LFV in different
RPV models, and compare them to the expectations of R-conserving
supersymmetry with heavy right-handed neutrinos. We show that the
predictions are vastly different and uniquely characterise each model,
thus providing a powerful framework for experimentally distinguishing
between different theories of LFV. Besides the obvious possibility of
amplified tree-level generation of µ → eee and µ → e conversion in
nuclei, we find that even in the case where these processes arise at the
one-loop level, their rates are comparable to that of µ → eγ, in clear
contrast to the predictions of R-conserving models. We conclude that
in order to distinguish between the different models, such a combined
study of all the LFV processes is necessary, and that measuring P-odd
asymmetries in polarised µ → eee can play a decisive role. We also
comment on the intriguing possibility of RPV models yielding a large
T-odd asymmetry in the decay of polarised µ → eee.
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1 Introduction

Recently, neutrino oscillation experiments [1, 2, 3] have provided very strong
evidence for non-zero, yet tiny, neutrino masses. In order to accommodate
such small masses, it is widely believed that new physics beyond the Standard
Model (SM) is required. One of the simplest and most elegant mechanisms
for generating a small neutrino mass is to introduce extra standard model
singlets to the SM Lagrangian, and allow them to acquire a very large
Majorana mass (this is the well known seesaw mechanism [4]). There are
many important phenomenological consequences of neutrino masses. One
of them is that individual lepton-flavour numbers are not conserved, which
implies that SM forbidden processes such as µ → eγ may occur. However,
given the size of the neutrino masses, the rates for charged lepton flavour
violating (LFV) phenomena are extremely small in the SM plus massive
neutrinos [5].

There are other hints for physics beyond the SM, including the gauge hi-
erarchy problem. Low-energy supersymmetry (SUSY) is one of the preferred
candidates for beyond the SM physics which solves the hierarchy problem.
SUSY models can easily accomodate the seesaw mechanism, and SUSY even
helps in the sense that it stabilises the (very heavy) Majorana mass of the
right-handed neutrino. Furthermore, in such a framework, LFV processes in
the charged lepton sector such as µ → eγ, µ → eee, and µ → e conversion in
nuclei are potentially amplified, as has been previously discussed [6, 7, 8, 9],
and the rates for such processes can be within the reach of future experiments.
The reason for this is that while in the SM plus massive neutrinos the
amplitudes for LFV violation are proportional to the neutrino masses (i.e.,
suppressed by the very large right-handed neutrino masses, in the case of
the seesaw mechanism), in SUSY models these processes are only suppressed
by inverse powers of the supersymmetry breaking scale, which is at most
O(1) TeV.

Another SM extension which naturally accommodates non-zero neutrino
masses is SUSY with R-parity violation (RPV). R-parity is usually imposed
as a global symmetry of the minimal supersymmetric version of the SM
(MSSM) in order to prevent an unacceptably large rate for proton decay.
However, this proves to be somewhat of an overkill, since R-parity conser-
vation implies both baryon number and lepton number conservation, while
to stop proton decay only one or the other needs to be exactly conserved.
In light of the evidence for neutrino masses, which can potentially be Ma-
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jorana particles and therefore violate lepton number, one may, instead, take
advantage of RPV operators to generate small neutrino masses.

In this paper, we consider SUSY models with RPV but with baryon
parity (in order to satisfy the current experimental upper limits on the proton
lifetime [10]).1 These models naturally generate small Majorana neutrino
masses, if the RPV couplings are small [13, 14, 15].2 In such RPV models,
“large” LFV in the charged lepton sector is also generically expected. Indeed,
as has been pointed out in the literature [17, 18, 19, 20, 21, 22], the most
stringent limits on certain products of RPV couplings come from the present
experimental bounds on charged LFV processes. Therefore it is important
to understand some of the general features of LFV in models with RPV.

It is interesting to consider how searches for LFV at low energy ex-
periments compare to those at colliders. For instance, the similtaneous
presence of R-violating operators that couple both to e − q and to µ − q
(τ − q) pairs, would lead to µ+jet (τ+jet) final states at HERA [23]. It
turns out that for e ↔ τ transitions, the high energy experimental probes
provide the strongest bounds, while for e ↔ µ transitions stopped muon
experiments provide, by far, the most stringent bounds. Finally, the strongest
bound for τ ↔ µ transitions comes from τ → µγ searches at CLEO [24]
(Br(τ → µγ) < 1.1× 10−6) which is less restrictive. In the near future, the
experimental sensitivity to some rare muons processes is going to improve by
two to three orders of magnitude, while a similar improvement is not expected
for other LFV processes. For this reason, we will focus on processes with
stopped muons, which not only provide the stringest quantitative bounds on
LFV today, but which will be significantly probed in the near future.

In this paper, we discuss the LFV processes µ+ → e+γ, µ+ → e+e−e+,
and µ− → e− conversion in the case of models with trilinear RPV. In Sec. 2,
we briefly introduce the SUSY models with trilinear RPV which will be
considered here. In Sec. 3, we present the formalism for computing branching
ratios and asymmetries of the relevant LFV processes. In Sec. 4, we consider
LFV processes in some representative cases, including those in which the
branching ratio for µ+ → e+γ is much smaller than the branching ratio for

1In cosmology, large RPV Yukawa couplings may erase a pre-existing baryon
asymmetry [11]. Here we do not consider such constraints since they are model-dependent
and can be evaded in several baryogenesis scenarios [12].

2A mechanism which explains why RPV couplings are small is required. This can be
achieved, for example, by imposing flavour symmetries which relate the lepton and baryon
number violating Yukawa couplings to those that generate fermion masses [16].
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µ+ → e+e−e+ and/or the rate for µ− → e− conversion in nuclei, which can
be generated at the tree-level. Even if all LFV processes occur at the one-
loop level, the rates for all three processes considered here are comparable.
These features are completely different from the predictions of other neutrino
mass generating SUSY frameworks, such as the MSSM with right-handed
neutrinos [7]. In the latter, the branching ratio for µ+ → e+γ is much
larger than that for µ+ → e+e−e+ and the rate for µ− → e− conversion in
nuclei, even though all processes are also generated at the one-loop level.
We also show that P-odd asymmetries in the µ+ → e+e−e+ process (which
require polarised muons in order to be measured) are very useful in order to
distinguish different models. Sec. 5 contains our conclusions. In Appendix A
we provide explicit expressions for the LFV vertices in the case of models with
RPV, while in Appendix B we discuss the current bounds on certain pairs of
RPV couplings from LFV processes and comment on neutrino masses.

2 SUSY models with trilinear R-parity vio-

lation

Here, we briefly introduce the SUSY models with RPV which will be dis-
cussed in the upcoming sections. If R-parity conservation is not postulated,
in addition to ordinary Yukawa interactions, the following terms are allowed
in the MSSM superpotential:

WRPV =
λijk

2
LiLjĒk + λ′ijkLiQjD̄k + λ′′ijkŪiD̄jD̄k + µ′iLiHu, (2.1)

where Li, Ēi, Qi, Ūi, D̄i, and Hu denote the left-handed doublet lepton,
right-handed lepton, left-handed doublet quark, right-handed up-type quark,
right-handed down-type quark, and “up-type” Higgs superfields, respectively.
The indices i, j and k range from 1 to 3 for different quark/lepton flavours.
Throughout this paper, in order to forbid rapid proton decay, we impose
baryon parity [10], so all λ′′ couplings are zero. We also make the simplifying
assumption that all µ′ also vanish.3 In light of these assumptions, the
superpotential above yields the following Lagrangian:

L = λijk (ν̄c
LieLj ẽ

∗
Rk + ēRkνLiẽLj + ēRkeLj ν̃Li)

3Even if µ′i were non-zero, their contributions to LFV processes would be, in general,
negligible because of neutrino mass constraints [14, 22].
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+ λ′ijkV
jα
KM

(
ν̄c

LidLαd̃∗Rk + d̄RkνLid̃Lα + d̄RkdLαν̃Li

)
− λ′ijk

(
ūc

jeLid̃
∗
Rk + d̄RkeLiũLj + d̄RkuLj ẽLi

)
+ h.c., (2.2)

where f (f = ν, e, d, and u) denotes fermions and f̃ sfermions, and the
index (R, L) indicates the field’s chirality. We assume that the RPV Yukawa
couplings above (λijk and λ′ijk) are the only source of LFV. In what follows,
Eq. (2.2) is what is referred to by “RPV model.”

3 Branching ratios and asymmetries for the

LFV processes

In this section, we present complete expressions for the branching ratios for
the LFV processes µ+ → e+γ, µ+ → e+e−e+, and µ− → e− conversion in
nuclei, for the P-odd asymmetry in µ+ → e+γ, and for the P-odd and T-odd
asymmetries in µ+ → e+e−e+.

3.1 µ+ → e+γ

The process µ+ → e+γ(∗) is generated by photon penguin diagrams (see the
penguin diagrams in Figs. 1, 2, and 4). The amplitude for this process can
be written as follows:

T = eεα∗v̄µ(p)
[
(AL

1 PL + AR
1 PR)γβ(gαβq2 − qαqβ)

+mµiσαβqβ(AL
2 PL + AR

2 PR)
]
ve(p− q),(3.1)

where vµ(e) and ε are the antimuon (positron) and photon wave functions,
and p and q are the antimuon and photon momenta, respectively. PL and
PR are chirality projection operators: PL = (1− γ5)/2, and PR = (1 + γ5)/2,
while σαβ = (i/2)[γα, γβ]. The effective couplings AL,R

1 come from off-shell
photon diagrams (q2 6= 0), which only contribute to µ+ → e+e−e+ and
µ → e conversion in nuclei. On the other hand, the couplings AL,R

2 arise
from the on-shell photon diagrams (q2 = 0), which induce µ+ → e+γ as well
as µ+ → e+e−e+ and µ− → e− conversion in nuclei. Explicit expressions for
AL,R

1,2 in models with RPV are presented in Appendix A.
In the µ+ → e+γ decay, it has been argued [25] that a nonzero muon

polarisation is useful not only to suppress background processes, but also to
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distinguish between µ+ → e+
Lγ and µ+ → e+

Rγ. The differential branching
ratio for µ+ → e+γ is given by

dBr(µ+ → e+γ)

d cos θ
=

Br(µ+ → e+γ)

2
{1 + APP cos θ} , (3.2)

where P is the muon polarisation and θ is the angle between the positron mo-
mentum and the polarisation direction. Here, the branching ratio Br(µ+ →
e+γ) and the P-odd asymmetry AP are

Br(µ+ → e+γ) =
48π3α

G2
F

(
|AL

2 |2 + |AR
2 |2
)
, (3.3)

AP =
|AL

2 |2 − |AR
2 |2

|AL
2 |2 + |AR

2 |2
, (3.4)

where GF is the Fermi constant, and α is the fine-structure constant.

3.2 Polarised µ+ → e+e+e−

In the RPV models, some of the LLĒ couplings (λijk) generate µ+ → e+e−e+

at tree-level (Fig. 1), while the photon penguin vertices AL,R
1,2 also contribute.4

The amplitude for µ+ → e+e−e+ is

T = BLv̄µ(p)PLγµve(p2)ūe(p3)PRγµve(p1)

+ BRv̄µ(p)PRγµve(p2)ūe(p3)PLγµve(p1)

+4παv̄µ(p)

{
(AL

1 PL + AR
1 PR)γµ + mµi

σµνq
ν

q2
(AR

2 PR + AL
2 PL)

}
ve(p2)

×ūe(p3)γ
µve(p1)− (p1 ↔ p2), (3.5)

where the explicit expressions for the tree-level vertices BR(L) in models with
RPV are given in Appendix A.

When the muon is polarised, two P-odd and one T-odd asymmetry can
be defined [26, 27]. Using the notation introduced by Okada et al. [27], the
z-axis is taken to be the direction of the electron momentum and the (z×x)–
plane is taken to be the decay plane. The positron with the largest energy

4There is also a Z-penguin contribution. However, its contribution is suppressed by
m2

f/m2
Z where mf is the typical fermion mass in the process. Therefore we simply neglect

it. In order to be consistent, we will not study processes where top-quarks are involved.
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is denoted as positron 1 and the other as positron 2. The x-coordinate is
defined as (p1)x ≥ 0 where ~p1 is the momentum of positron 1. It is in this

coordinate system that the direction of the muon polarisation ~P , used below,
is defined. (For details, see [27].) Finally, the P-odd and T-odd asymmetries
are defined as follows:

AP1 =
N(Pz > 0)−N(Pz < 0)

N(Pz > 0) + N(Pz < 0)
,

=
3

2Br(δ)
{0.61(C1 − C2)− 0.12(C3 − C4) + 5.6(C5 − C6)

−4.7(C7 − C8) + 2.5(C9 − C10)} , (3.6)

AP2 =
N(Px > 0)−N(Px < 0)

N(Px > 0) + N(Px < 0)
,

=
3

2Br(δ)
{0.1(C3 − C4) + 10(C5 − C6)

+2.0(C7 − C8)− 1.6(C9 − C10)} , (3.7)

AT =
N(Py > 0)−N(Py < 0)

N(Py > 0) + N(Py < 0)
,

=
3

2Br(δ)
{2.0C11 − 1.6C12} , (3.8)

where the muons are assumed to be 100% polarised, and N(Pi > (<)0)
denotes the number of events with a positive (negative) Pi component for
the muon polarisation. Here an energy cutoff for positron 1 is introduced
(E1 < (mµ/2)(1 − δ)) and henceforth we will consider δ = 0.02, following
Okada et al. [27]. This choice is made in order to optimise the T-odd
asymmetry. Of course, one can obtain more information concerning the Ci

coefficients, including the CP-odd terms C11 and C12, (see definition of Ci in
what follows) by analysing the Dalitz plot of the µ+ → e+e−e+ decay. Ci

(i = 1− 12) are functions of the effective couplings AL,R
1,2 and BL,R:

C1 =
2π2α2

G2
F

|AR
1 |2, C2 =

2π2α2

G2
F

|AL
1 |2, (3.9)

C3 =
1

8G2
F

|BR + 4παAR
1 |2, C4 =

1

8G2
F

|BL + 4παAL
1 |2, (3.10)

C5 =
π2α2

2G2
F

|AR
2 |2, C6 =

π2α2

2G2
F

|AL
2 |2, (3.11)
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C7 = −π2α2

G2
F

Re(AR
2 AL∗

1 ), C8 = −π2α2

G2
F

Re(AL
2 AR∗

1 ), (3.12)

C9 = − πα

4G2
F

Re{AR
2 (BL∗ + 4παAL∗

1 )}, (3.13)

C10 = − πα

4G2
F

Re{AL
2 (BR∗ + 4παAR∗

1 )}, (3.14)

C11 =
πα

8G2
F

Im
{
8πα(AR

2 AL∗
1 + AL

2 AR∗
1 )
}

, (3.15)

C12 =
πα

4G2
F

Im
{
AR

2 (BL∗ + 4παA∗L
1 ) + AL

2 (BR∗ + 4παAR∗
1 )
}

. (3.16)

The branching ratio for δ = 0.02 is

Br(δ = 0.02) = 1.8(C1 + C2) + 0.96(C3 + C4) + 88(C5 + C6)

+14(C7 + C8) + 8(C9 + C10). (3.17)

The branching ratio for µ+ → e+e−e+ for δ = 0 is given by

Br(µ+ → e+e−e+) = 2(C1 + C2) + C3 + C4 + 32

{
log

m2
µ

m2
e

− 11

4

}
(C5 + C6)

+16(C7 + C8) + 8(C9 + C10) (3.18)

=
1

8G2
F

[
|BL|2 + |BR|2 + 48π2α2

{
|AL

1 |2 + |AR
1 |2

+
8

3

(
log

m2
µ

m2
e

− 11

4

)
(|AR

2 |2 + |AL
2 |2)− 4Re(AL

1 AR∗
2 + AR

1 AL∗
2 )

}

+8παRe
{
AL

1 BL∗ + AR
1 BR∗ − 2(AR

2 BL∗ + AL
2 BR∗)

}]
.(3.19)

3.3 µ− → e− conversion in nuclei

Similarly to µ+ → e+e−e+, not only photon penguin diagrams but also tree-
level diagram induced by some of the LQD̄ Yukawa couplings (λ′ijk) can
generate µ− → e− conversion in nuclei. The amplitude is given by

T = DuūeγµPLuµ ūuγµPLuu + DdūeγµPLuµ ūdγµPRud

− 4παūe

{
γµ(A

L∗
1 PL + AR∗

1 PR) + mµi
σµνq

ν

q2
(AR∗

2 PR + AL∗
2 PL)

}
uµ

× ∑
q=u,d

Qqūqγµuq, (3.20)
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where the complete expressions for the tree-level contributions Du,d in the
case of RPV models are presented in Appendix A. The µ− → e− conversion
rate is

R(µ− → e−) =
α3Z4

eff |F (q)|2m5
µ

16π2Z Γ(µ capture)

{
64π2α2|AR

1 − AL
2 |2 (3.21)

+
∣∣∣(2Z + N)Du + (Z + 2N)Dd − 8παZ(AL∗

1 −AR∗
2 )
∣∣∣2} ,

where Γ(µ capture) is the muon capture rate in the nucleus of interest [28], Z
and N are the proton and neutron numbers, respectively, F (q) is the nuclear
form factor as a function of the momentum transfer and Zeff is the nuclear
effective charge [29]. In some of the most commonly used nuclei, 48

22Ti and
27
13Al, these nuclear parameters are given by [29]

Γ(µ capture) = 2.590× 106 s−1 = 1.7× 10−18 GeV,

Z = 22, Zeff = 17.61, |F (q2 = −m2
µ)| = 0.535 for 48

22Ti, (3.22)

and

Γ(µ capture) = 0.7054× 106 s−1 = 4.6× 10−19 GeV,

Z = 13, Zeff = 11.62, |F (q2 = −m2
µ)| = 0.64 for 27

13Al. (3.23)

4 LFV in representative cases

The most severe constraints on some particular products of trilinear RPV
couplings come from the present experimental upper limits on the branch-
ing ratios of the LFV processes discussed in the previous section (see Ap-
pendix B) [17, 18, 19, 20, 21, 22]. Therefore, searches for LFV in muon
processes are particularly sensitive to models with RPV. Generically, it is
very hard to make definite predictions for the branching ratios of the LFV
processes since the number of new Yukawa couplings (λijk, λ

′
ijk) is too large.

Here we consider, instead, different cases where only a small number of RPV
couplings is significant for LFV. This is done not only to simplify the problem
at hand, but also to identify features of LFV which are not only different from
those in the “traditional” models, such as the MSSM with heavy right-handed
neutrinos discussed in [6, 7, 8], but which can also be used to characterise
the different cases themselves. This dominance of specific RPV couplings is
also a consequence of certain flavour models [16].
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µ+
R e+

Lλ231

ν̃τ
e+

R

e−R

λ131

µ+
L λ231 λ131

ντ (ν̃τ ) e+
R

ẽ−R (e−R )

γ

λ231 λ131
µ−L e−Lντ (ν̃τ )

ẽ−R (e−R )

γ

q q

Figure 1: Lowest order Feynman diagrams for lepton flavour violating
processes induced by λ131λ231 couplings (see Eq. (2.1)).

4.1 µ+ → e+e−e+ induced at tree-level

First, we consider a model in which only the Yukawa couplings λ131 and λ231

are non-zero. In this case, µ+ → e+e−e+ is generated at the tree-level, while
the other LFV processes (µ+ → e+γ and µ− → e− conversion in nuclei)
are induced via photon penguin diagrams at the one-loop level, as shown in
Fig. 1.

The effective vertices are given by

BL = −λ131λ231

2m2
ν̃τ

, (4.1)

AR
2 = − λ131λ231

96π2m2
ν̃τ

(
1− m2

ν̃τ

2m2
ẽR

)
, (4.2)

AL
1 =

λ131λ231

96π2m2
ν̃τ

(
−8

3
− 2 log

m2
e

m2
ν̃τ

+
m2

ν̃τ

3m2
ẽR

− 2δ(m2
e/q

2)

)
. (4.3)

Here we assume, without loss of generality, that the RPV couplings are real.
The function δ is presented in Appendix A. In µ− → e− conversion, we
assume the momentum of the virtual photon to be q2 = −m2

µ in order to
compute δ(m2

e/q
2) in AL

1 , while in the case of µ+ → e+e−e+, we simply set
q2 = 0 (δ = 0), since the tree-level contribution BL is much larger than
the contribution from δ(m2

e/q
2). The ratios of branching ratios, Br(µ+ →

e+γ)/Br(µ+ → e+e−e+) and R(µ− → e− in nuclei)/Br(µ+ → e+e−e+) do
not depend on the R-parity violating couplings λ131λ231, and only depend on
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the SUSY mass spectrum through m2
ν̃τ

and m2
ẽR

:

Br(µ+ → e+γ)

Br(µ+ → e+e−e+)
=

4× 10−4

(
1− m2

ν̃τ

2m2
ẽR

)2

β
= 1× 10−4, (4.4)

R(µ− → e− in Ti (Al))

Br(µ+ → e+e−e+)
=

2 (1)× 10−5

β

(
5

6
+

m2
ν̃τ

12m2
ẽR

+ log
m2

e

m2
ν̃τ

+ δ

)2

,

= 2 (1)× 10−3, (4.5)

the second of the equal signs being valid for mν̃τ = mẽR
= 100 GeV. Here

β = 1+(one-loop contr.)/(tree-level contr.) in the µ+ → e+e−e+ process,
which is close to unity (for example, β = 0.98 for mν̃τ = mẽR

= 100 GeV).
Since the µ+ → e+e−e+ process is generated at tree level, its branching ratio
is much larger than that of the other LFV processes, as expected. If such a
scenario were realized in nature, the µ+ → e+e−e+ process would dominate
over all the other channels, i.e., it is very likely that if nature realizes this
particular scenario, µ+ → e+e−e+ is within experimental reach while µ+ →
e+γ is orders of magnitude below any foreseeable future experiment.

Another interesting feature of Eqs.(4.4,4.5) is that, because of an ultravi-
olet log-enhancement of the off-shell photon penguin contribution (AL

1 ) [20,
30], the µ− → e− conversion rates are significantly larger than the branching
ratio of µ+ → e+γ.

It is important to emphasise that the ratios of branching ratios of the
different processes are very different from those in the different neutrino-mass
models. For example, in the MSSM with heavy right-handed neutrinos (and
R-parity conservation) [7], the following relations are approximately satisfied,
because the on-shell photon penguin contribution AR

2 tends to dominate over
all others:

Br(µ+ → e+γ)

Br(µ+ → e+e−e+)
' 3π

α
(
log

m2
µ

m2
e
− 11

4

) = 1.6× 102, (4.6)

R(µ− → e− in Ti)

Br(µ+ → e+e−e+)
' α3Z4

effZ|F (q)|2m5
µG2

F

4π2
(
log

m2
µ

m2
e
− 11

4

)
Γ(µ capture)

= 0.92 (4.7)

Another interesting feature of the case at hand is that in the µ+ → e+e−e+

process we obtain the following P-odd asymmetries (Eqs. (3.6-3.7)):

AP1 ' 3(0.12C4)

2(0.96C4)
= 19%, (4.8)
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AP2 ' −3(0.1C4)

2(0.96C4)
= −15%, (4.9)

AP1

AP2

' −1.3, (4.10)

since the tree-level contribution BL (C4) is dominant. The key feature here
is that the two different P-odd asymmetries have opposite sign; AP1/AP2 '
−1.3. More generally, this feature is present whenever the effective vertices
BL,R are dominant. In Table 1 we list results of other similar examples.

The situation is clearly different from the MSSM with heavy right-handed
neutrinos, where the on-shell photon contributions AR

2 (C5) are dominant
(this case is also listed in Table 1, in order to facilitate comparisons):

AP1 ' 3(5.6C5)

2(87C5)
= 10%, AP2 '

3(10C5)

2(87C5)
= 17%,

AP1

AP2

' 0.6. (4.11)

Therefore, a measurement of the (sign of the) ratio of P-odd asymmetries
in µ+ → e+e−e+ can clearly separate these two models (BL,R � AL,R

i versus

AL,R
2 � BL,R).

Another useful observable which may be measured in the case one has
access to polarised muon decays is AP (Eq. (3.4)). In RPV models, AP can
have different values (see Table 1), while in other SUSY extensions of the
SM, either µ+ → e+

Lγ or µ+ → e+
Rγ is forbidden. Some examples include R-

parity conserving SUSY with right-handed handed neutrinos (see Table 1),
SU(5) and SO(10) SUSY grand unified theories, and other MSSM extensions
[31, 9].

4.2 All processes induced at one-loop level

Here we consider a different representative case, in which all of µ+ → e+γ,
µ+ → e+e−e+, and µ− → e− conversion in nuclei are induced at the one-loop
level (at the lowest order in RPV couplings) through the photon penguin
diagram (Fig. 2). Suppose, as an example, that only the couplings λ132 and
λ232 are nonzero (again we assume that both of them are real, without loss
of generality). The effective vertices for the LFV processes are
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Table 1: The ratios of branching ratios Br(µ+ → e+γ)/Br(µ+ → e+e−e+) and
R(µ− → e− in Ti)/Br(µ+ → e+e−e+), P-odd asymmetries AP for µ+ → e+γ,
AP1 and AP2 for µ+ → e+e−e+ are shown when the listed pair of Yukawa
couplings is dominant. Case (1), (2), (3) refers to the representative classes
of models discussed in Secs. 4.1, 4.2, and 4,3, respectively. Here, we assume
mν̃,l̃R

= 100 GeV and no mixing in the charged slepton mass matrix, and
mq̃ = 300 GeV. We also show a typical result obtained for the MSSM with
heavy right-handed neutrinos and R-parity conservation [7].

Br(µ→eγ)
Br(µ→3e)

R(µ→e in Ti)
Br(µ→3e)

AP AP1 AP2 AP1/AP2

Case (1)
λ131λ231 1× 10−4 2× 10−3 −100% +19% −15% −1.3
λ121λ122 8× 10−4 7× 10−3 +100% −19% +15% −1.3
λ131λ132 8× 10−4 5× 10−3 +100% −19% +15% −1.3
Case (2)
λ132λ232 1.2 18 −100% −25% −5% 5.6
λ133λ233 3.7 18 −100% −25% −4% 6.2
λ231λ232 3.6 18 +100% +25% +4% 6.2
λ′122λ

′
222 1.4 18 −100% −25% −4% 5.7

λ′123λ
′
223 2.2 18 −100% −25% −4% 5.9

Case (3)
λ′111λ

′
211 0.4 3× 102 −100% −26% −5% 5.4

λ′112λ
′
212 0.5 8× 104 −100% −26% −5% 5.4

λ′113λ
′
213 0.7 1× 105 −100% −26% −5% 5.5

λ′121λ
′
221 1.1 2× 105 −100% −26% −5% 5.6

MSSM with νR 1.6× 102 0.92 −100% 10% 17% 0.6
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µ+
L λ232 λ132

ντ (ν̃τ ) e+
R

µ̃−R (µ−R )

γ

λ232 λ132
µ+

R e+
Rντ (ν̃τ )

µ̃−R (µ−R )

γ

e (q) e (q)

Figure 2: Lowest order Feynman diagrams for lepton flavour violating
processes induced by λ132λ232 couplings (see Eq. (2.1)).

AR
2 = − λ132λ232

96π2m2
ν̃τ

(
1− m2

ν̃τ

2m2
µ̃R

)
, (4.12)

AL
1 =

λ132λ232

96π2m2
ν̃τ

(
−8

3
− 2 log

m2
µ

m2
ν̃τ

+
m2

ν̃τ

3m2
µ̃R

− δ(m2
µ/q2)

)
. (4.13)

Again, we set q2 = −m2
µ for µ− → e− conversion, and q2 = 0 for µ+ →

e+e−e+.5 The ratios of branching ratios Br(µ+ → e+γ)/Br(µ+ → e+e−e+)
and R(µ− → e− in nuclei)/Br(µ+ → e+e−e+) are independent on the choice
of λ132λ232:

Br(µ+ → e+γ)

Br(µ+ → e+e−e+)
= 3.2× 103

(
1− m2

ν̃τ

2m2
µ̃R

)2

(
−8

3
− 2 log

m2
µ

m2
ν̃τ

+
m2

ν̃τ

3m2
µ̃R

)2

γ

,

= 1.2, (4.14)

R(µ− → e− in Ti (Al))

Br(µ+ → e+e−e+)
= 19.5 (11.5)

(
5
3

+
m2

ν̃τ

6m2
µ̃R

+ 2 log
m2

µ

m2
ν̃τ

+ δ
)2

(
−8

3
− 2 log

m2
µ

m2
ν̃τ

+
m2

ν̃τ

3m2
µ̃R

)2

γ

,

= 18 (11), (4.15)

5Since the log-term is much larger than the δ term for 0 < q2 < m2
� in Eq. (4.13), the

result does not depend significantly on the choice of q in the µ+ → e+e−e+ process.
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where the second of the equal signs holds for mν̃τ = mµ̃R
= 100 GeV. Here

γ is a function of the SUSY mass spectrum, but it is of order unity.

γ = 1 +

8
3
|AR

2 |2
(
log

m2
µ

m2
e
− 11

4

)
− 4Re(AL

1 AR
2 )

|AL
1 |2

. (4.16)

As an example, γ = 1.09 for mν̃τ = mµ̃R
= 100 GeV.

Because of the ultraviolet log-enhancement of the off-shell photon penguin
diagram (AL

1 ) in Eq.(4.13), the event rates for the µ+ → e+e−e+ and µ− → e−

conversion in nuclei can be as large as the branching ratio for the µ+ → e+γ
process, even though they are higher order processes in QED.6 Fig. 3 depicts
the dependence on the slepton masses of these ratios of branching ratios. In
the case of µ+ → e+γ, a cancellation between the two different diagrams
(sneutrino and smuon loops) can occur, such that its branching ratio can
be much smaller than that of the other processes. On the other hand, the
numerical value of the ratio R(µ− → e− in nuclei)/Br(µ+ → e+e−e+) is
stable in a large region of the parameter space. All the LFV processes are
equally relevant in this model. Again, we stress that these ratios of the
branching ratios are very different in more “traditional” cases, such as in the
MSSM with heavy right-handed neutrinos (see Eqs.(4.6,4.7)).

Since the off-shell photon diagram AL
1 is dominant in the µ+ → e+e−e+

process, C2 (= C4) in Eqs.(3.9,3.10) is much larger than the other Ci (i 6=
2, 4). In this case, the P-odd asymmetries behave as follows:

AP1 ' 3(−0.61C2 + 0.12C4)

2(1.8C2 + 0.96C4)
= −26% (4.17)

AP2 ' 3(−0.1C4)

2(1.8C2 + 0.96C4)
= −5% (4.18)

AP2

AP1

' 0.19. (4.19)

These relations (Eqs.(4.14,4.15,4.19)) are a typical feature of models in which
the off-shell photon diagram is the dominant contribution to the µ+ →
e−e+e− process. The results of other similar examples are also listed in
Table 1.

6In the case of µ+ → e+e−e+, there is also an infrared log-enhancement to the
branching ratio, as can be seen in Eq. (3.19).
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Figure 3: Contours of constant Br(µ+ → e+γ)/Br(µ+ → e+e−e+) (top), and
R(µ− → e− in Ti)/Br(µ+ → e+e−e+) (bottom) in the (mµ̃R

× mν̃τ ) plane,
assuming that only the product of LLĒ couplings λ132λ232 is non-zero (see
Eq. (2.1)).
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µ−L dλ
′
221
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d e−L
λ

′
121

µ+
L λ

′
221 λ

′
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Figure 4: Lowest order Feynman diagrams of lepton flavour violating
processes induced by f

′
121f

′
221 couplings (see Eq. (2.1)).

4.3 µ− → e− conversion in nuclei induced at tree-level

Here, we consider the possibility that µ− → e− conversion in nuclei is induced
at tree-level. This can arise through some of the LQD̄ terms (λ′ijk). As an
example, we consider a model in which only λ′121 and λ′221 are non-zero, so
µ− → e− conversion is generated at tree-level while µ+ → e+γ and µ+ →
e+e−e+ are generated at one-loop level (Fig. 4).

The LFV vertices are

Dd = −f
′
121λ

′
221

2m2
c̃L

, AR
2 = − f

′
121λ

′
221

64π2m2
d̃R

, (4.20)

AL
1 =

f
′
121λ

′
221

96π2m2
d̃R


−5− 4 log

m2
c

m2
d̃R

− 2

3
δ(m2

c/q
2)

+
m2

d̃R

m2
c̃L

(
−2− 2 log

m2
d

m2
c̃L

− 1

3
δ(m2

d/q
2)

)
 . (4.21)

As before, we set q2 = −m2
µ for µ− → e− conversion, and q2 = 0 for µ+ →

e+e−e+. The ratios of branching ratios are

Br(µ+ → e+γ)

Br(µ+ → e+e−e+)
= 1.1, (4.22)

R(µ− → e− in Ti (Al))

Br(µ+ → e+e−e+)
= 2 (1)× 105. (4.23)

Here we assume md̃R
= mc̃L

= 300 GeV. Since µ− → e− conversion is
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induced at the tree-level, its event rate is much larger than that of other
processes, as expected.

In µ+ → e+e−e+, the off-shell photon penguin vertex (AL
1 ) dominates

over the other contributions because of the ultraviolet log-enhancement.
Therefore, the ratio of branching ratios Br(µ+ → e+γ)/Br(µ+ → e+e−e+)
and the P-odd asymmetries AP1 and AP2 (which are presented in Table 1) are
very similar to those we obtained in the previous subsection. The order one
numerical differences come from the different sfermion masses used in both
cases and the fact that there are quarks and not leptons running around the
loops. Results for other similar examples are also listed in Table 1.

In the case of µ+ → e+e−e+, the fact that we choose a fixed value of q2(=
0) instead of integrating over all possible q2 values leads to some uncertainty.
These, however, are not important as far as our intentions here are concerned.
We note that the numbers presented in Table 1 for ratios of branching ratios
when there are first generation quarks running around the loops are uncertain
by some tens of percent.

4.4 Large T-odd Asymmetry in µ+ → e+e−e+

It is important to understand if any interesting effect can be obtained if
more than a single pair of RPV couplings is present. Here we consider the
possibility that µ+ → e+e−e+ is generated at the tree-level, but that the loop-
level contributions of on-shell (and off-shell) photons is comparable. This can
be accomplished by having, for example, nonzero λ131λ231 and λ133λ233 �
λ131λ231.

In this case, all of BL, AL
1 , and AR

2 can be comparable, and there is the
possibility that the T-odd asymmetry in µ+ → e+e−e+ decay (Eq.(3.8)) is
large. We proceed to discuss this in more detail.

We will consider the most general case in which all effective couplings BL,
AL

1 , and AR
2 are independent (as may be effectively the case if many RPV

couplings are relevant). In this case, the T-odd asymmetry (Eq.(3.8)) can be
written as

AT =
3(a11C11 − a12C12)

2(a2C2 + a4C4 + a5C5 + a7C7 + a9C9)
,

=
3a11x sin(θ2 − θ1)− 3a12{y sin θ2 + x sin(θ2 − θ1)}

X
, (4.24)
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where

X = 4a2x
2 + 4a4(x

2 + y2 + 2xy cos θ1) + a5

−2a7x cos(θ2 − θ1)− 2a9{y cos θ2 + x cos(θ2 − θ1)}.
Here (a2, a4, a5, a7, a9, a11, a12) = (1.8, 0.96, 88, 14, 7.5, 2.0, 1, 6), x = |AL

1 /AR
2 |,

y = |BL/4παAR
2 |, and θ1 (θ2) is the relative phase between BL and AL

1 (AR
2 ).

Even when x, y, θ1 and θ2 are treated as independent parameters, this T-odd
asymmetry has a maximum value,

AT |max = 24%, (4.25)

when

x =

∣∣∣∣∣A
L
1

AR
2

∣∣∣∣∣ = 2.56,

y =

∣∣∣∣∣ BL

4παAR
2

∣∣∣∣∣ = 4.23,

θ1 = −2.28,

θ2 = −1.56. (4.26)

This upper limit is quite general, and applies to any extension of the SM. It
can be obtained directly from the most general effective Lagrangian which
parametrises µ+ → e+e−e+ [32].

Fig. 5 depicts the value of the T-odd asymmetry and the ratio of branching
ratios of µ+ → e+γ and µ+ → e+e−e+, when we fix θ1 = −2.28, θ2 =
−1.56 (same as at the maximum point). As can be seen from Fig. 5, these
two observables are strongly correlated. In the region where the T-odd
asymmetry is relatively large, the branching ratio for µ+ → e+γ tends to be
much bigger than the one for µ+ → e+e−e+, since an on-shell photon coupling
AR

2 comparable to AR
1 and BL is required in order to obtain a large T-odd

asymmetry. In this case, the branching ratio of µ+ → e+e−e+ is dominated
by the AR

2 coefficient due to the relatively large collinear infrared logarithm
(see Eq. (3.19)) and we obtain a ratio of branching ratios similar to the one
obtained for the MSSM with heavy right-handed neutrinos (Eq. (4.6)).

In a generic RPV model, the T-odd asymmetry is unlikely to be close to
its maximum value (Eq.(4.25)) because the branching ratio for µ+ → e+e−e+

is expected to be comparable to (an in some cases even much larger than)
the one for µ+ → e+γ, as we argued in the previous subsections. It is,
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however, possible to tune the various parameters in order to achieve large
effects. In other SUSY extensions of the SM, large T-odd asymmetries can
also be obtained in particular regions of parameter space. For example, the
authors of [27] discuss LFV in the case of SUSY grand unified theories, and
find T-odd asymmetries larger than 15% in some SU(5) models.

As an example, consider a situation where λ131λ
∗
213 = 10−6 and λ133λ

∗
233 =

1.6×10−4ei π
2 , while all other RPV couplings are zero, leading to AT = 17% for

mν̃τ = 500 GeV and mẽR
= mτ̃R

= 100 GeV. Here Br (µ+ → e+γ) = 5×10−12

and Br (µ+ → e+e−e+) = 3× 10−14. Note that, in order to obtain large AT

values, one is required to impose a mild hierarchy in the ratios of scalar
masses (order 101) and a more severe, finely-tuned hierarchy in the ratio of
couplings (order 102), as is illustrated in Fig. 6.

5 Conclusions

We discussed lepton flavour violation (LFV) in rare muon processes (µ+ →
e+γ, µ+ → e+e−e+, µ− → e− conversion in nuclei) in SUSY models with
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trilinear R-parity violation (RPV). Such models are interesting in the sense
that they can accommodate neutrino masses without requiring the introduc-
tion of extra fields to the MSSM. Natural explanations for the smallness of
the RPV couplings have been studied [16], and are not discussed here.

It is well known that LFV in the charged lepton sector is a very sensitive
probe for models with RPV, and that some of the most stringent constraints
on RPV couplings come from LFV processes. Here, instead of concentrating
on how RPV couplings are constrained by LFV, we study the expectations
for LFV observables in the case nature realizes SUSY with small RPV, and
discuss a number of different observables which may play a decisive role in
distinguishing RPV models among themselves and from other SUSY models.

Along these lines, we considered a number of representative cases for
different RPV models in order to understand a number of features related to
LFV. An important observation is that, in generic RPV models, all of the
LFV processes considered are of the same order (i.e. the ratio of branching
ratios is of order one), or µ+ → e+γ is very suppressed with respect to either
µ+ → e+e−e+ and/or µ− → e− conversion in nuclei, as is summarised in
Table 1. This behaviour is to be compared with R-conserving SUSY models
with heavy right-handed neutrinos, where the branching ratio of µ+ → e+γ
is always much larger than the branching ratio for µ+ → e+e−e+ and (in
general) the rate for µ− → e− conversion in nuclei.

We also argue that the P-odd and T-odd asymmetries which can be
measured in the case of polarised µ+ → e+e−e+ decays give an extra handle
when it comes to distinguishing different models. In particular, we discussed
whether a large T-odd asymmetry can be generated in the case of RPV
SUSY.

In summary, if there is indeed low-energy SUSY with small but non-
negligible RPV couplings, it is likely that these not only contribute to Majo-
rana neutrino masses but also will be probed by LFV in the charged lepton
sector. If this is the case, naively higher order QED processes, such as
µ+ → e+e−e+ or µ− → e− conversion in nuclei are at least as relevant
as the more canonical µ+ → e+γ decay.

Independently of what the new physics beyond the SM is, it should
be kept in mind that improving the current experimental sensitivity of all
LFV processes is important. We hope to discuss this important issue in a
future publication [32]. We conclude by stressing that there are proposals for
improving the sensitivity to µ+ → e+γ down to branchings ratios of 10−14

[33] and the sensitivity to µ− → e− conversion in nuclei down to rates of 10−16
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[34] (see Appendix B); however, in the case of the µ+ → e+e−e+, there are
no proposals for improving the current best bound, which is already twelve
years old! In view of the results discussed here, we believe that experiments
which are sensitive to smaller branching ratios for µ+ → e+e−e+ (at least as
sensitive as the future µ+ → e+γ experiments) are of the utmost importance.
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A LFV effective vertices in trilinear RPV

In this Appendix, we present explicit expressions for the LFV effective ver-
tices AL,R

1,2 , BL,R, and Du,d in the trilinear RPV models considered in the
body of this paper.

A.1 Photon penguin vertices

The photon penguin vertices are defined in Eq.(3.1). The effective couplings

A
L(R)
i (i = 1, 2) are given by

A
R(L)
i = A

R(L)(e)
i + A

R(L)(ν)
i + A

R(L)(u)
i + A

R(L)(d)
i , (A.1)

where A
R(L)(e,ν)
i are induced by R-parity violating LLĒ couplings through

a lepton–sneutrino loop and a neutrino–slepton loop, respectively. A
R(L)(u,d)
i

are generated by LQD̄ couplings through an up-type quark–down-type squark
loop and a down-type quark–up-type squark loop, respectively. The explicit
expressions for the on-shell photon vertices A2 are as follows:

A
R(e)
2 = − λ13jλ

∗
23j

16π2m2
ν̃3

J (1)
σ

(
m2

ej

m2
ν̃3

,
q2

m2
ν̃3

,
m2

µ

m2
ν̃3

)
, (A.2)

A
R(ν)
2 =

λ13jλ
∗
23j

16π2m2
ẽRj

J (2)
σ

(
m2

ν3

m2
ẽRj

,
q2

m2
ẽRj

,
m2

µ

m2
ẽRj

)
, (A.3)
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A
L(e)
2 = − λ∗ij1λij2

16π2m2
ν̃i

J (1)
σ

(
m2

ej

m2
ν̃i

,
q2

m2
ν̃i

,
m2

µ

m2
ν̃i

)
, (A.4)

A
L(ν)
2 =

λ∗ij1λij2

16π2m2
ẽLj

J (2)
σ

(
m2

νi

m2
ẽLj

,
q2

m2
ẽLj

,
m2

µ

m2
ẽLj

)
, (A.5)

A
R(u)
2 = − λ

′
1ijλ

′∗
2ij

16π2m2
d̃Rj


2J (1)

σ


 m2

ui

m2
d̃Rj

,
q2

m2
d̃Rj

,
m2

µ

m2
d̃Rj




−J (2)
σ


 m2

ui

m2
d̃Rj

,
q2

m2
d̃Rj

,
m2

µ

m2
d̃Rj




 , (A.6)

A
R(d)
2 = − λ

′
1ijλ

′∗
2ij

16π2m2
ũLi

{
J (1)

σ

(
m2

dj

m2
ũLi

,
q2

m2
ũLi

,
m2

µ

m2
ũLi

)

−2J (2)
σ

(
m2

dj

m2
ũLi

,
q2

m2
ũLi

,
m2

µ

m2
ũLi

)}
, (A.7)

A
L(u)
2 = A

L(d)
2 = 0. (A.8)

Here the functions J (1,2)
σ are defined by

J (1)
σ (a, b, c)

=
∫ 1

0
dy
∫ 1−y

0
dx

x(1− x− y)

x{1− c(1− x− y)}+ a(1− x)− by(1− x− y)
,(A.9)

J (2)
σ (a, b, c)

=
∫ 1

0
dy
∫ 1−y

0
dx

y(1− x− y)

x + y − cy(1− x− y) + a(1− x− y)− bxy
. (A.10)

When b, c � 1, these functions can be approximated by

J (1)
σ (a, b, c) =

2 + 3a− 6a2 + a3 + 6a log a

12(1− a)4
, (A.11)

J (2)
σ (a, b, c) =

1− 6a + 3a2 + 2a3 − 6a2 log a

12(1− a)4
. (A.12)

The off-shell photon vertices A1 are expressed as follows:

A
L(e)
1 =

λ13jλ
∗
23j

16π2m2
ν̃3

J (1)
q

(
m2

ej

m2
ν̃3

,
q2

m2
ν̃3

,
m2

µ

m2
ν̃3

)
, (A.13)

A
L(ν)
1 = − λ13jλ

∗
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16π2m2
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J (2)
q
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,
q2
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m2

µ
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ẽRj

)
, (A.14)
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q

(
m2

ej

m2
ν̃i

,
q2

m2
ν̃i

,
m2

µ

m2
ν̃i

)
, (A.15)
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,
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,
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, (A.16)
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A
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1 =
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′
1ijλ

′∗
2ij

16π2m2
ũLi
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,
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,
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where the functions J (1,2)
q are defined by

J (1)
q (a, b, c)

=
∫ 1

0
dy
∫ 1−y

0
dx

(x + 2y)(1− x− y)

x{1− c(1− x− y)}+ a(1− x)− by(1− x− y)
,(A.19)

J (2)
q (a, b, c)

=
∫ 1

0
dy
∫ 1−y

0
dx

y(x− y)

x + y − cy(1− x− y) + a(1− x− y)− bxy
. (A.20)

When a, b, c � 1, these functions are well approximated by

J (1)
q (a, b, c) = −1

3

(
4

3
+ log a + δ(a/b)

)
, (A.21)

J (2)
q (a, b, c) = − 1

18
, (A.22)

where

δ(d) =

{ −5
3
− 4d + 2(1 + 2d)

√
1− 4d tanh−1 1√

1−4d
, for d < 1

4
,

−5
3
− 4d + 2(1 + 2d)

√
4d− 1 tan−1 1√

4d−1
, for d > 1

4
.
(A.23)

When a � b, c and b, c � 1,

J (1)
q (a, b, c) =

−16 + 45a− 36a2 + 7a3 − (12− 18a) log a

36(1− a)4
, (A.24)
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J (2)
q (a, b, c) =

−2 + 9a− 18a2 + 11a3 − 6a3 log a

36(1− a)4
. (A.25)

A.2 Tree-level vertices in the µ+ → e+e−e+ process

The tree-level vertices BR(L) in the µ+ → e+e−e+ process are defined in
Eq.(3.5). Their explicit expressions are given by

BL = −λi11λ
∗
i21

2m2
ν̃i

, (A.26)

BR = −λ∗i11λi12

2m2
ν̃i

. (A.27)

A.3 Tree-level vertices in the µ− → e− conversion pro-
cess

The tree-level vertices for µ− → e− conversion were defined in Eq.(3.20).
Their explicit forms are

Du =
λ

′∗
11iλ

′
21i

2m2
d̃Ri

, (A.28)

Dd = −λ
′∗
1j1λ

′
2j1

2m2
ũLj

. (A.29)

B Constraints on R-parity-violating Couplings

from LFV Processes and Neutrino Masses

The experimental limits on LFV processes set tight bounds on specific com-
binations of R-parity violating couplings. The most stringent experimental
limit on the branching ratio of µ+ → e+e−e+ is given by the SINDRUM
experiment at PSI [35]:7

Br(µ+ → e+e−e+)|exp. < 1.0× 10−12. (B.30)

7In order to reach the current bounds, rare muon decay experiments need to stop the
muons before they decay. For this reason, they are constrained to analyse µ+ decays, since
the µ− is readily captured by the material present in order to stop the muons and there
are virtually no free µ− decays. For the same reason, one can only measure the µ → e
conversion rate in nuclei for the µ−.

25



The present experimental limit on the branching ratio of µ+ → e+γ process
is set by the MEGA collaboration at LANL [36]:

Br(µ+ → e+γ)|exp. < 1.2× 10−11. (B.31)

This limit will be significantly improved (or, perhaps, LFV will be found!)
in the near future by a new experiment at PSI [33], which claims to be able
to observe µ+ → e+γ events if Br(µ+ → e+γ) > 10−14. The present experi-
mental bound on the conversion rate of µ− → e− in 48

22Ti was determined by
the SINDRUM 2 collaboration at PSI [37]:

R(µ− → e− in 48
22Ti)|exp. < 6.1× 10−13. (B.32)

The future proposed (almost approved) experiment MECO [34] claims that it
will be able to see µ− → e− conversion in aluminium if R(µ− → e− in 27

13Al) >
10−16. (More futuristic proposals claim sensitivity to values of the rate of
µ− → e− conversion in nuclei as low as 10−18 [38]!)

Tables 2, 3 contain current and near future bounds on the absolute values
of some pairs of RPV couplings, assuming that all other pairs of couplings
vanish.

In models with trilinear RPV, neutrino masses are generated at one-
loop via squark (slepton) exchange for LQD̄ (LLĒ) operators. Under the
assumption that the left-right sfermion soft mass-squared mixing terms are
diagonal in the physical basis and proportional to the associated fermion
mass (m2

f̃LR
∝ mfmf̃ ), the formula for the neutrino masses can be simplified

to [15]

mνii′ ' ncλijkλikj

16π2
mfj

mfk


f(m2

fj
/m2

f̃k
)

mf̃k

+
f(m2

fk
/m2

f̃j
)

mf̃j


 (B.33)

f(x) = (x ln x− x + 1)/(x− 1)2

Here, mfi
is the fermion mass of the ith generation inside the loop, mf̃i

is

the average of the f̃Li and f̃Ri squark masses, and nc is a colour factor (3 for
LQD̄ operators and 1 for LLĒ operators). This expression implies that the
heavier the fermions in the loop, the stricter the bounds [15]. For example,
demanding meµ < 1 eV for sparticle masses of 300 GeV, mb = 4.4 GeV
and ms = 170 MeV, leads to λ

′
133λ

′
233 ≤ 4 · 10−7. For λ

′
122λ

′
222 the bound

drops to 2.3 ·10−4 [15], while for “Super-Kamiokande-friendly” solutions with

26



Table 2: Current (future) constraints on the R-parity violating couplings
LLĒ (see Eq. (2.1)) from LFV processes, assuming that only the listed pair of
coupling is nonzero. The current (future) upper limits on the branching ratios
are: Br(µ+ → e+γ) < 1.2× 10−11 (10−14), Br(µ+ → e+e−e+) < 1.0× 10−12,
and R(µ− → e− in Ti) < 6.1 × 10−13 (R(µ− → e− in Al) < 10−16).Here
we assume all the sneutrino masses degenerate with right-handed slepton
masses, mν̃,l̃R

= 100 GeV, and we neglect left-right mixing in the charged
slepton mass matrix. The notation (tree) indicates that the µ+ → e+e−e+

process is generated at the tree-level.

µ → eγ µ → eee µ → e in nuclei
|λ131λ231| 2.3× 10−4 [18] 6.7× 10−7(tree) [17] 1.1× 10−5 [20]

(7× 10−6) (2× 10−7)
|λ132λ232| 2.3× 10−4 [18] 7.1× 10−5 1.3× 10−5 [20]

(7× 10−6) (2× 10−7)
|λ133λ233| 2.3× 10−4 [18] 1.2× 10−4 2.3× 10−5 [20]

(7× 10−6) (4× 10−7)
|λ121λ122| 8.2× 10−5 [18] 6.7× 10−7(tree) [17] 6.1× 10−6 [20]

(2× 10−6) (1× 10−7)
|λ131λ132| 8.2× 10−5 [18] 6.7× 10−7(tree) [17] 7.6× 10−6 [20]

(2× 10−6) (1× 10−7)
|λ231λ232| 8.2× 10−5 [18] 4.5× 10−5 8.3× 10−6 [20]

(2× 10−6) (1× 10−7)
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Table 3: Current (future) constraints on the R-parity violating couplings
LQD̄ (see Eq. (2.1)) from LFV processes, assuming that only the listed pair of
coupling is nonzero. The current (future) upper limits on the branching ratios
are: Br(µ+ → e+γ) < 1.2× 10−11 (10−14), Br(µ+ → e+e−e+) < 1.0× 10−12,
and R(µ− → e− in Ti) < 6.1 × 10−13 (R(µ− → e− in Al) < 10−16). Here
we assume all the squark masses are degenerate, with mq̃ = 300 GeV. The
notation (tree) indicates that the µ− → e− conversion process is generated
at the tree-level.

µ → eγ µ → eee µ → e in nuclei
|λ′111λ′211| 6.8× 10−4 [18] 1.3× 10−4 5.4× 10−6 (tree) [19]

(2× 10−5) (2× 10−7)
|λ′112λ′212| 6.8× 10−4 [18] 1.4× 10−4 3.9× 10−7 (tree) [19]

(2× 10−5) (7× 10−9)
|λ′113λ′213| 6.8× 10−4 [18] 1.6× 10−4 3.9× 10−7 (tree) [19]

(2× 10−5) (7× 10−9)
|λ′121λ′221| 6.8× 10−4 [18] 2.0× 10−4 3.6× 10−7 (tree) [19]

(2× 10−5) (6× 10−9)
|λ′122λ′222| 6.8× 10−4 [18] 2.3× 10−4 4.3× 10−5 [20]

(2× 10−5) (7× 10−7)
|λ′123λ′223| 6.9× 10−4 [18] 2.9× 10−4 5.4× 10−5 [20]

(2× 10−5) (9× 10−7)
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hierarchical neutrinos the bounds on certain products of RPV couplings can
be stricter by some orders of magnitude.

When comparing these bounds with the ones from LFV in Tables 2 and
3, we see that for a large number of models the bounds from stopped muon
processes are significantly stronger than those from neutrino masses. A
proper study of these processes therefore, can shed additional light in the
issue of lepton number violation.
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D53 (1996) 413; M.E. Gómez and H. Goldberg, Phys. Rev. D53 (1996)
5244; N.G. Deshpande, B. Dutta, and E. Keith, Phys. Rev. D54 (1996)
730 T.V. Duong, B. Butta, and E. Keith, Phys. Lett. B378 (1996) 128
J. Hisano, T. Moroi, K. Tobe, and M. Yamaguchi, Phys. Lett. B391
(1997) 341, erratum B397 (1997) 357; D. Suematsu, Phys. Lett. B416
(1998) 108 J. Hisano, D. Nomura, Y. Okada, and M. Tanaka, Phys. Rev.
D58 (1998) 116010; S.F. King and M. Oliveira, Phys. Rev. D60 (1999)
035003; G. Couture, M. Frank, H. Konig, and M. Pospolov, Euro. Phys.
C7 (1999) 139; K. Kurosawa and N. Maekawa, Prog. Theor. Phys. 102
(1999) 121; Y. Okada and K. Okumura, Phys. Rev. D61 (2000) 094001;
R. Kitano and K. Yamamoto, hep-ph/9905459; G. Barenboim, K. Huitu,
and M. Raidal, hep-ph/0005159.
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