1,156 research outputs found

    Finite-size left-passage probability in percolation

    Full text link
    We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. Our calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and the results are expressed in terms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramm's left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.Comment: 21 pages, 8 figure

    Exactly solvable quantum spin ladders associated with the orthogonal and symplectic Lie algebras

    Full text link
    We extend the results of spin ladder models associated with the Lie algebras su(2n)su(2^n) to the case of the orthogonal and symplectic algebras $o(2^n),\ sp(2^n)$ where n is the number of legs for the system. Two classes of models are found whose symmetry, either orthogonal or symplectic, has an explicit n dependence. Integrability of these models is shown for an arbitrary coupling of XX type rung interactions and applied magnetic field term.Comment: 7 pages, Late

    Magnetization Plateaux in Bethe Ansatz Solvable Spin-S Ladders

    Full text link
    We examine the properties of the Bethe Ansatz solvable two- and three-leg spin-SS ladders. These models include Heisenberg rung interactions of arbitrary strength and thus capture the physics of the spin-SS Heisenberg ladders for strong rung coupling. The discrete values derived for the magnetization plateaux are seen to fit with the general prediction based on the Lieb-Schultz- Mattis theorem. We examine the magnetic phase diagram of the spin-1 ladder in detail and find an extended magnetization plateau at the fractional value =1/2 = {1/2} in agreement with the experimental observation for the spin-1 ladder compound BIP-TENO.Comment: 11 pages, 1 figur

    Magnetization Plateaus in a Solvable 3-Leg Spin Ladder

    Full text link
    We present a solvable ladder model which displays magnetization plateaus at fractional values of the total magnetization. Plateau signatures are also shown to exist along special lines. The model has isotropic Heisenberg interactions with additional many-body terms. The phase diagram can be calculated exactly for all values of the rung coupling and the magnetic field. We also derive the anomalous behaviour of the susceptibility near the plateau boundaries. There is good agreement with the phase diagram obtained recently for the pure Heisenberg ladders by numerical and perturbative techniques.Comment: 4 pages, revtex, 3 postscript figures, small changes to the text and references update

    Structure of the two-boundary XXZ model with non-diagonal boundary terms

    Full text link
    We study the integrable XXZ model with general non-diagonal boundary terms at both ends. The Hamiltonian is considered in terms of a two boundary extension of the Temperley-Lieb algebra. We use a basis that diagonalizes a conserved charge in the one-boundary case. The action of the second boundary generator on this space is computed. For the L-site chain and generic values of the parameters we have an irreducible space of dimension 2^L. However at certain critical points there exists a smaller irreducible subspace that is invariant under the action of all the bulk and boundary generators. These are precisely the points at which Bethe Ansatz equations have been formulated. We compute the dimension of the invariant subspace at each critical point and show that it agrees with the splitting of eigenvalues, found numerically, between the two Bethe Ansatz equations.Comment: 9 pages Latex. Minor correction

    Non-local space-time supersymmetry on the lattice

    Full text link
    We show that several well-known one-dimensional quantum systems possess a hidden nonlocal supersymmetry. The simplest example is the open XXZ spin chain with \Delta=-1/2. We use the supersymmetry to place lower bounds on the ground state energy with various boundary conditions. For an odd number of sites in the periodic chain, and with a particular boundary magnetic field in the open chain, we can derive the ground state energy exactly. The supersymmetry thus explains why it is possible to solve the Bethe equations for the ground state in these cases. We also show that a similar space-time supersymmetry holds for the t-J model at its integrable ferromagnetic point, where the space-time supersymmetry and the Hamiltonian it yields coexist with a global u(1|2) graded Lie algebra symmetry. Possible generalizations to other algebras are discussed.Comment: 12 page

    Exact expressions for correlations in the ground state of the dense O(1) loop model

    Full text link
    Conjectures for analytical expressions for correlations in the dense O(1)(1) loop model on semi infinite square lattices are given. We have obtained these results for four types of boundary conditions. Periodic and reflecting boundary conditions have been considered before. We give many new conjectures for these two cases and review some of the existing results. We also consider boundaries on which loops can end. We call such boundaries ''open''. We have obtained expressions for correlations when both boundaries are open, and one is open and the other one is reflecting. Also, we formulate a conjecture relating the ground state of the model with open boundaries to Fully Packed Loop models on a finite square grid. We also review earlier obtained results about this relation for the three other types of boundary conditions. Finally, we construct a mapping between the ground state of the dense O(1)(1) loop model and the XXZ spin chain for the different types of boundary conditions.Comment: 25 pages, version accepted by JSTA

    Power spectra of TASEPs with a localized slow site

    Full text link
    The totally asymmetric simple exclusion process (TASEP) with a localized defect is revisited in this article with attention paid to the power spectra of the particle occupancy N(t). Intrigued by the oscillatory behaviors in the power spectra of an ordinary TASEP in high/low density phase(HD/LD) observed by Adams et al. (2007 Phys. Rev. Lett. 99 020601), we introduce a single slow site with hopping rate q<1 to the system. As the power spectrum contains time-correlation information of the particle occupancy of the system, we are particularly interested in how the defect affects fluctuation in particle number of the left and right subsystems as well as that of the entire system. Exploiting Monte Carlo simulations, we observe the disappearance of oscillations when the defect is located at the center of the system. When the defect is off center, oscillations are restored. To explore the origin of such phenomenon, we use a linearized Langevin equation to calculate the power spectrum for the sublattices and the whole lattice. We provide insights into the interactions between the sublattices coupled through the defect site for both simulation and analytical results.Comment: 16 pages, 6 figures; v2: Minor revision

    Generalized T-Q relations and the open XXZ chain

    Full text link
    We propose a generalization of the Baxter T-Q relation which involves more than one independent Q(u). We argue that the eigenvalues of the transfer matrix of the open XXZ quantum spin chain are given by such generalized T-Q relations, for the case that at most two of the boundary parameters {\alpha_-, \alpha_+, \beta_-, \beta_+} are nonzero, and the bulk anisotropy parameter has values \eta = i \pi/2, i\pi/4, ...Comment: 14 pages, LaTeX; amssymb, no figure

    Integrability as a consequence of discrete holomorphicity: the Z_N model

    Full text link
    It has recently been established that imposing the condition of discrete holomorphicity on a lattice parafermionic observable leads to the critical Boltzmann weights in a number of lattice models. Remarkably, the solutions of these linear equations also solve the Yang-Baxter equations. We extend this analysis for the Z_N model by explicitly considering the condition of discrete holomorphicity on two and three adjacent rhombi. For two rhombi this leads to a quadratic equation in the Boltzmann weights and for three rhombi a cubic equation. The two-rhombus equation implies the inversion relations. The star-triangle relation follows from the three-rhombus equation. We also show that these weights are self-dual as a consequence of discrete holomorphicity.Comment: 11 pages, 7 figures, some clarifications and a reference adde
    corecore