2,236 research outputs found
Sporadic porphyria cutanea tarda due to haemochromatosis
Haemochromatosis is a hereditary iron-overload syndrome caused by
increased intestinal iron absorption and characterised by accumulation of
potentially toxic iron in the tissues. Sometimes this disease presents as
a cutanea porphyria. We describe a patient with joint complaints and
blistering skin lesions on sun-exposed skin. After identifying the
porphyria cutanea tarda by urine analysis we found that the serum activity
of uroporphyrinogen decarboxylase (UROD) was normal, meaning a partial
inactivation of UROD in liver tissue due to external factors. Further
investigation showed the homozygous Cys282Tyr missense mutation and high
levels of serum ferritin. It is important to recognise the symptoms of
iron overloading at an early stage because hereditary haemochromatosis
needs to be treated immediately. We therefore advocate routine sampling of
ferritin levels in patients with unexplained joint complaints
Sensitive Limits on the Water Abundance in Cold Low Mass Molecular Cores
We present SWAS observations of water vapor in two cold star-less clouds, B68
and Core D in rho Ophiuchus. Sensitive non-detections of the 1(10)-1(01)
transition of o-H2O are reported for each source. Both molecular cores have
been previously examined by detailed observations that have characterized the
physical structure. Using these rather well defined physical properties and a
Monte-Carlo radiation transfer model we have removed one of the largest
uncertainties from the abundance calculation and set the lowest water abundance
limit to date in cold low-mass molecular cores. These limits are < 3 x 10^{-8}
(relative to H2) and < 8 x 10^{-9} in B68 and rho Oph D, respectively. Such low
abundances confirm the general lack of ortho-water vapor in cold (T < 20 K)
cores. Provided that the ortho/para ratio of water is not near zero, these
limits are well below theoretical predictions and appear to support the
suggestion that most of the water in dense low-mass cores is frozen onto the
surfaces of cold dust grains.Comment: 12 pages, 3 figures, accepted by Astrophysical Journal Letter
Seed quality of high protein corn lines in low input and conventional farming systems
Seed quality is a major issue for crop establishment especially in low input farming systems, where varieties often grow under more stressful conditions than in conventional farming systems. Corn (Zea mays L.) seed for organic (low input) production will eventually need to be grown organically, thus research is needed to ensure excellent seed quality in organic corn seed production. The objective of this study was to compare seed quality and composition differences between a group of high protein corn genotypes grown under low input and conventional farming systems, and to compare the relative seed quality of these genotypes to two well known inbreds, B73 or Mo17. Twenty high protein breeding genotypes were planted during two growing seasons in conventional and organic nurseries near Ames, Iowa, to produce seeds for laboratory tests. The germination, saturated cold, accelerated aging, and soak test percentages of seeds produced organically were 5 to 11% lower than for seeds produced conventionally. Protein, measured by near-infrared reflectance, was unaffected by the production location, but the oil content of seeds produced organically was significantly higher (between 0.2 and 0.3% higher) than in the conventional system. Location by genotype interactions for most tests were non significant both years, indicating that genotypes selected for high seed quality in a conventional system will also have high seed quality when grown in a low input, organic system
The origin of runaway stars
Milli-arcsecond astrometry provided by Hipparcos and by radio observations
makes it possible to retrace the orbits of some of the nearest runaway stars
and pulsars to determine their site of origin. The orbits of the runaways AE
Aurigae and mu Columbae and of the eccentric binary iota Orionis intersect each
other about 2.5 Myr ago in the nascent Trapezium cluster, confirming that these
runaways were formed in a binary-binary encounter. The path of the runaway star
zeta Ophiuchi intersects that of the nearby pulsar PSR J1932+1059, about 1 Myr
ago, in the young stellar group Upper Scorpius. We propose that this neutron
star is the remnant of a supernova that occurred in a binary system which also
contained zeta Oph, and deduce that the pulsar received a kick velocity of
about 350 km/s in the explosion. These two cases provide the first specific
kinematic evidence that both mechanisms proposed for the production of runaway
stars, the dynamical ejection scenario and the binary-supernova scenario,
operate in nature.Comment: 5 pages, including 2 eps-figures and 1 table, submitted to the ApJ
Letters. The manuscript was typeset using aaste
Star formation environments and the distribution of binary separations
We have carried out K-band speckle observations of a sample of 114 X-ray
selected weak-line T Tauri stars in the nearby Scorpius-Centaurus OB
association. We find that for binary T Tauri stars closely associated to the
early type stars in Upper Scorpius, the youngest subgroup of the OB
association, the peak in the distribution of binary separations is at 90 A.U.
For binary T Tauri stars located in the direction of an older subgroup, but not
closely associated to early type stars, the peak in the distribution is at 215
A.U. A Kolmogorov-Smirnov test indicates that the two binary populations do not
result from the same distibution at a significance level of 98%. Apparently,
the same physical conditions which facilitate the formation of massive stars
also facilitate the formation of closer binaries among low-mass stars, whereas
physical conditions unfavorable for the formation of massive stars lead to the
formation of wider binaries among low-mass stars. The outcome of the binary
formation process might be related to the internal turbulence and the angular
momentum of molecular cloud cores, magnetic field, the initial temperature
within a cloud, or - most likely - a combination of all of these. We conclude
that the distribution of binary separations is not a universal quantity, and
that the broad distribution of binary separations observed among main-sequence
stars can be explained by a superposition of more peaked binary distributions
resulting from various star forming environments. The overall binary frequency
among pre-main-sequence stars in individual star forming regions is not
necessarily higher than among main-sequence stars.Comment: 7 pages, Latex, 4 Postscript figures; also available at
http://spider.ipac.caltech.edu/staff/brandner/pubs/pubs.html ; accepted for
publication in ApJ Letter
Mid-infrared Imaging of a Circumstellar Disk Around HR 4796: Mapping the Debris of Planetary Formation
We report the discovery of a circumstellar disk around the young A0 star, HR
4796, in thermal infrared imaging carried out at the W.M. Keck Observatory. By
fitting a model of the emission from a flat dusty disk to an image at
lambda=20.8 microns, we derive a disk inclination, i = 72 +6/-9 deg from face
on, with the long axis of emission at PA 28 +/-6 deg. The intensity of emission
does not decrease with radius as expected for circumstellar disks but increases
outward from the star, peaking near both ends of the elongated structure. We
simulate this appearance by varying the inner radius in our model and find an
inner hole in the disk with radius R_in = 55+/-15 AU. This value corresponds to
the radial distance of our own Kuiper belt and may suggest a source of dust in
the collision of cometesimals. By contrast with the appearance at 20.8 microns,
excess emission at lambda = 12.5 microns is faint and concentrated at the
stellar position. Similar emission is also detected at 20.8 microns in residual
subtraction of the best-fit model from the image. The intensity and ratio of
flux densities at the two wavelengths could be accounted for by a tenuous dust
component that is confined within a few AU of the star with mean temperature of
a few hundred degrees K, similar to that of zodiacal dust in our own solar
system. The morphology of dust emission from HR 4796 (age 10 Myr) suggests that
its disk is in a transitional planet-forming stage, between that of massive
gaseous proto-stellar disks and more tenuous debris disks such as the one
detected around Vega.Comment: 9 pages, 4 figures as LaTex manuscript and postscript files in
gzipped tar file. Accepted for publication in Astrophysical Journal Letters.
http://upenn5.hep.upenn.edu/~davidk/hr4796.htm
- …