2 research outputs found

    Design of lightweigh electric vehicles

    Get PDF
    The design and manufacture of lightweight electric vehicles is becoming increasingly important with the rising cost of petrol, and the effects emissions from petrol powered vehicles are having on our environment. The University of Waikato and HybridAuto's Ultracommuter electric vehicle was designed, manufactured, and tested. The vehicle has been driven over 1800km with only a small reliability issue, indicating that the Ultracommuter was well designed and could potentially be manufactured as a solution to ongoing transportation issues. The use of titanium aluminide components in the automotive industry was researched. While it only has half the density of alloy steel, titanium aluminides have the same strength and stiffness as steel, along with good corrosion resistance, making them suitable as a lightweight replacement for steel components. Automotive applications identified that could benefit from the use of TiAl include brake callipers, brake rotors and electric motor components

    The emergence of battery electric vehicles: A NZ manufacturing opportunity?

    Get PDF
    Personal passenger transport faces several challenges in the coming decades: depletion of cheap oil reserves, increasing congestion, localised pollution, the need for reduced carbon emissions and the long term goal of sustainability. One way of solving some of these problems could be to introduce comfortable, energy efficient, battery electric vehicles. Currently, hybrid vehicles have been presented as a means to reducing the transportation related oil demand. New developments in materials and technologies have made them, cleaner and safer as well as more fuel efficient. However, hybrids will only prolong the use of oil until alternatively fuelled vehicles are developed. One long term alternative is the battery electric vehicle (BEV). A BEV designed to be light, aerodynamic with high efficiency drive train and latest battery technology would have a performance comparable to a typical internal combustion engine vehicle (ICEV). Recent developments in virtual engineering, rapid prototyping and advanced manufacturing might enable low-cost development of niche market BEV’s designed and built in New Zealand for export markets. This work examines the collaborative development of a twin seat BEV using new materials and latest technologies by the University of Waikato’s Engineering Department and a group of NZ and foreign companies. The car will be used to research the potential of BEVs and will also compete in the Commuter Class of the World Solar Challenge in 2007
    corecore