31 research outputs found

    Unveiling quantum-limited operation of interband cascade lasers

    Get PDF
    A comprehensive experimental analysis of the frequency fluctuations of a mid-infrared interband cascade laser, down to the quantum-limited operation, is reported. These lasers differ from any other class of semiconductor lasers in their structure and internal carrier generation and transport processes. Although already commercially available, a full evaluation of their potential has not been possible, until now, mainly because their internal dynamics are not yet understood well enough. The measured intrinsic linewidth, down to 10 kHz, ranks them in between quantum cascade and bipolar semiconductor lasers. Understanding the noise features is especially important for demanding applications and is a necessary step for a deeper knowledge of the physical behavior for this class of lasers, in view of the development of novel designs for improved performance.A comprehensive experimental analysis of the frequency fluctuations of a mid-infrared interband cascade laser, down to the quantum-limited operation, is reported. These lasers differ from any other class of semiconductor lasers in their structure and internal carrier generation and transport processes. Although already commercially available, a full evaluation of their potential has not been possible, until now, mainly because their internal dynamics are not yet understood well enough. The measured intrinsic linewidth, down to 10 kHz, ranks them in between quantum cascade and bipolar semiconductor lasers. Understanding the noise features is especially important for demanding applications and is a necessary step for a deeper knowledge of the physical behavior for this class of lasers, in view of the development of novel designs for improved performance

    Linestrength ratio spectroscopy as a new primary thermometer for redefined Kelvin dissemination

    Get PDF
    Experimental methods for primary thermometry, after Kelvin unit redefinition on May 2019, become based on a known value of the Boltzmann constant rather than by measuring temperature with respect to a reference point. In this frame, we propose Linestrength Ratio Thermometry (LRT) as a candidate method for primary thermometry in the 9-700 K temperature range. Temperature accuracies at the ppm level are prospected for LRT applied to optical transitions of the CO molecule in the range 80-700 K and of a rare-earth-doped crystal in the 9-100 K one. Future implementations of this technique can contribute to measure the calibration- discrepancies in the ITS-90 metrological scale of thermodynamic temperature which can have a measurable impact in applications ranging from fundamental-physics to meteorology and climatology

    MAPPING LOCAL CLIMATE ZONES WITH MULTIPLE GEODATA AND THE OPEN DATA CUBE: INSIGHTS OF DOMAIN USER REQUIREMENTS AND OUTLOOKS OF THE LCZ-ODC PROJECT

    Get PDF
    Rapid urbanization and climate change are intensifying the urban heat island (UHI) phenomenon across cities worldwide. There is a pressing need to implement evidence-based mitigation and adaptation strategies as well as to develop tools for effectively measuring the impact of such actions on UHI patterns. In this context, the Local Climate Zone (LCZ) concept is a well-established classification system commonly used for the assessment of UHI. With this in mind, we present here the LCZ-ODC project aiming to develop a methodology for LCZ mapping in the Metropolitan City of Milan (northern Italy) by leveraging multiple geospatial data and cutting-edge software tools, including the Open Data Cube (ODC). A key aim of the project is to develop user-oriented solutions facilitating the exploitation of the generated LCZ maps for different application tasks. In this paper, we first present a brief overview of the methodologies and data sources used in the literature for LCZ mapping. Then, we introduce the LCZ-ODC project, with a focus on the end-user requirements which were gathered through a questionnaire distributed to a sample of potential stakeholders. The primary objective of the survey was to collect insights and consolidate requirements related to the key features of LCZ maps that will be produced within the project. The outcomes of the survey play a pivotal role in guiding the project’s development phase, ensuring that the project outputs will effectively address the identified end-user needs

    Retrieval of phase relation and emission profile of quantum cascade laser frequency combs

    Full text link
    The major development recently undergone by quantum cascade lasers has effectively extended frequency comb emission to longer-wavelength spectral regions, i.e. the mid and far infrared. Unlike classical pulsed frequency combs, their mode-locking mechanism relies on four-wave mixing nonlinear processes, with a temporal intensity profile different from conventional short-pulses trains. Measuring the absolute phase pattern of the modes in these combs enables a thorough characterization of the onset of mode-locking in absence of short-pulses emission, as well as of the coherence properties. Here, by combining dual-comb multi-heterodyne detection with Fourier-transform analysis, we show how to simultaneously acquire and monitor over a wide range of timescales the phase pattern of a generic frequency comb. The technique is applied to characterize a mid-infrared and a terahertz quantum cascade laser frequency comb, conclusively proving the high degree of coherence and the remarkable long-term stability of these sources. Moreover, the technique allows also the reconstruction of electric field, intensity profile and instantaneous frequency of the emission.Comment: 20 pages. Submitted to Nature Photonic

    Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination

    Get PDF
    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S0—3P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature

    A Coherent Optical Fiber Link for Very Long Baseline Interferometry

    Get PDF
    We realize a phase-stabilised optical fiber backbone that connects the Italian National Metrology Institute with two radio telescopes over a 600 km baseline. This allows referencing of Very Long Baseline Interferometry (VLBI) facilities with the best atomic frequency standards available today and the implementation of a common-clock architecture, which we are now using to assess VLBI ultimate performances
    corecore