10,391 research outputs found

    Reconstruction of mimetic gravity in a non-singular bouncing universe from quantum gravity

    Full text link
    We illustrate a general reconstruction procedure for mimetic gravity. Focusing on a bouncing cosmological background, we derive general properties that must be satisfied by the function f(ϕ)f(\Box\phi) implementing the limiting curvature hypothesis. We show how relevant physical information can be extracted from power law expansions of ff in different regimes, corresponding e.g. to the very early universe or to late times. Our results are then applied to two specific models reproducing the cosmological background dynamics obtained in group field theory and in loop quantum cosmology, and we discuss the possibility of using this framework as providing an effective field theory description of quantum gravity. We study the evolution of anisotropies near the bounce, and discuss instabilities of scalar perturbations. Furthermore, we discuss two equivalent formulations of mimetic gravity: one in terms of an effective fluid with exotic properties, the other featuring two distinct time-varying gravitational "constants" in the cosmological equations.Comment: Invited article for the special issue "Progress in Group Field Theory and Related Quantum Gravity Formalisms" of the journal "Universe"; 21 pages, 2 figures; v2: matches published versio

    Accelerated expansion of the Universe without an inflaton and resolution of the initial singularity from Group Field Theory condensates

    Get PDF
    We study the expansion of the Universe using an effective Friedmann equation obtained from the dynamics of GFT (Group Field Theory) isotropic condensates. The evolution equations are classical, with quantum correction terms to the Friedmann equation given in the form of effective fluids coupled to the emergent classical background. The occurrence of a bounce, which resolves the initial spacetime singularity, is shown to be a general property of the model. A promising feature of this model is the occurrence of an era of accelerated expansion, without the need to introduce an inflaton field with an appropriately chosen potential. We discuss possible viability issues of this scenario as an alternative to inflation.Comment: 14 pages, 4 figures, v2 revised to match published versio

    Two-time Green's functions and spectral density method in nonextensive quantum statistical mechanics

    Full text link
    We extend the formalism of the thermodynamic two-time Green's functions to nonextensive quantum statistical mechanics. Working in the optimal Lagrangian multipliers representation, the qq-spectral properties and the methods for a direct calculation of the two-time qq% -Green's functions and the related qq-spectral density (qq measures the nonextensivity degree) for two generic operators are presented in strict analogy with the extensive (q=1q=1) counterpart. Some emphasis is devoted to the nonextensive version of the less known spectral density method whose effectiveness in exploring equilibrium and transport properties of a wide variety of systems has been well established in conventional classical and quantum many-body physics. To check how both the equations of motion and the spectral density methods work to study the qq-induced nonextensivity effects in nontrivial many-body problems, we focus on the equilibrium properties of a second-quantized model for a high-density Bose gas with strong attraction between particles for which exact results exist in extensive conditions. Remarkably, the contributions to several thermodynamic quantities of the qq-induced nonextensivity close to the extensive regime are explicitly calculated in the low-temperature regime by overcoming the calculation of the qq grand-partition function.Comment: 48 pages, no figure

    Spectral density method in quantum nonextensive thermostatistics and magnetic systems with long-range interactions

    Full text link
    Motived by the necessity of explicit and reliable calculations, as a valid contribution to clarify the effectiveness and, possibly, the limits of the Tsallis thermostatistics, we formulate the Two-Time Green Functions Method in nonextensive quantum statistical mechanics within the optimal Lagrange multiplier framework, focusing on the basic ingredients of the related Spectral Density Method. Besides, to show how the SDM works we have performed, to the lowest order of approximation, explicit calculations of the low-temperature properties for a quantum dd-dimensional spin-1/2 Heisenberg ferromagnet with long-range interactions decaying as 1/rp1/r^{p} (rr is the distance between spins in the lattice)Comment: Contribution to Next-SigmaPhi conference in Kolymbari, Crete, Greece, August 13-18, 2005, 9 page

    Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    Get PDF
    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.Comment: 10 pages, 1 figure, v2: added legend in Fig.1 and a referenc
    corecore