5 research outputs found

    M-theory Compactifications on Manifolds with G2 Structure

    Full text link
    In this paper we study M-theory compactifications on manifolds of G2 structure. By computing the gravitino mass term in four dimensions we derive the general form for the superpotential which appears in such compactifications and show that beside the normal flux term there is a term which appears only for non-minimal G2 structure. We further apply these results to compactifications on manifolds with weak G2 holonomy and make a couple of statements regarding the deformation space of such manifolds. Finally we show that the superpotential derived from fermionic terms leads to the potential that can be derived from the explicit compactification, thus strengthening the conjectures we make about the space of deformations of manifolds with weak G2 holonomy.Comment: 34 pages. Minor changes: typos corrected, references added. Version to appear in Class. Quantum Gra

    Heterotic domain wall solutions and SU(3) structure manifolds

    Full text link
    We examine compactifications of heterotic string theory on manifolds with SU(3) structure. In particular, we study N = 1/2 domain wall solutions which correspond to the perturbative vacua of the 4D, N =1 supersymmetric theories associated to these compactifications. We extend work which has appeared previously in the literature in two important regards. Firstly, we include two additional fluxes which have been, heretofore, omitted in the general analysis of this situation. This allows for solutions with more general torsion classes than have previously been found. Secondly, we provide explicit solutions for the fluxes as a function of the torsion classes. These solutions are particularly useful in deciding whether equations such as the Bianchi identities can be solved, in addition to the Killing spinor equations themselves. Our work can be used to straightforwardly decide whether any given SU(3) structure on a six-dimensional manifold is associated with a solution to heterotic string theory. To illustrate how to use these results, we discuss a number of examples taken from the literature.Comment: 34 pages, minor corrections in second versio

    Lectures on Nongeometric Flux Compactifications

    Full text link
    These notes present a pedagogical review of nongeometric flux compactifications. We begin by reviewing well-known geometric flux compactifications in Type II string theory, and argue that one must include nongeometric "fluxes" in order to have a superpotential which is invariant under T-duality. Additionally, we discuss some elementary aspects of the worldsheet description of nongeometric backgrounds. This review is based on lectures given at the 2007 RTN Winter School at CERN.Comment: 31 pages, JHEP
    corecore