988 research outputs found
Design and Fabrication of Flexible Copper Sensor Decorated with Bismuth Micro/Nanodentrites to Detect Lead and Cadmium in Noninvasive Samples of Sweat
The use of economic methods to design and fabricate flexible copper sensors decorated with bismuth micro/nanodentrites for the detection of lead and cadmium in sweat is demonstrated. The flexible copper sensors were constructed with simple and cost-effective materials; namely, flexible and adhesive conductive copper tape, adhesive label containing the design of a three-electrode electrochemical system, and nail polish or spray as a protective layer. The flexible copper device consisted of a working electrode decorated with bismuth micro/nanodentrites using an electrodeposition technique, a copper pseudo-reference and copper counter electrodes. Under optimal experimental conditions, the flexible sensing platform showed excellent performance toward the detection of lead and cadmium using differential pulse anodic stripping voltammetry (DPAdSV) in a wide linear range from 2.0 ÎŒM to 50 ÎŒM with acceptable reproducibility and repeatability, and limits of detection and quantification of 5.36 and 17.9 ÎŒM for Cd2+ ions and 0.76 ÎŒM and 2.5 for Pb2+ ions. Studies of addition and recovery in spiked artificial sweat sample were performed, with a recovery of 104.6%. The flexible copper device provides a great opportunity for application in wearable perspiration-based healthcare systems or portable sensors to detect toxic metals in biological samples
Inequality, Fiscal Capacity and the Political Regime: Lessons from the Post-Communist Transition
Using panel data for twenty-seven post-communist economies between 1987-2003, we examine the nexus of relationships between inequality, fiscal capacity (defined as the ability to raise taxes efficiently) and the political regime. Investigating the impact of political reform we find that full political freedom is associated with lower levels of income inequality. Under more oligarchic (authoritarian) regimes, the level of inequality is conditioned by the stateâs fiscal capacity. Specifically, oligarchic regimes with more developed fiscal systems are able to defend the prevailing vested interests at a lower cost in terms of social injustice. This empirical finding is consistent with the model developed by Acemoglu (2006). We also find that transition countries undertaking early macroeconomic stabilisation now enjoy lower levels of inequality; we confirm that education fosters equality and the suggestion of Commander et al (1999) that larger countries are prone to higher levels of inequality.http://deepblue.lib.umich.edu/bitstream/2027.42/57211/1/wp831 .pd
A geometric approach to time evolution operators of Lie quantum systems
Lie systems in Quantum Mechanics are studied from a geometric point of view.
In particular, we develop methods to obtain time evolution operators of
time-dependent Schrodinger equations of Lie type and we show how these methods
explain certain ad hoc methods used in previous papers in order to obtain exact
solutions. Finally, several instances of time-dependent quadratic Hamiltonian
are solved.Comment: Accepted for publication in the International Journal of Theoretical
Physic
Stochastic Gravity: A Primer with Applications
Stochastic semiclassical gravity of the 90's is a theory naturally evolved
from semiclassical gravity of the 70's and 80's. It improves on the
semiclassical Einstein equation with source given by the expectation value of
the stress-energy tensor of quantum matter fields in curved spacetimes by
incorporating an additional source due to their fluctuations. In stochastic
semiclassical gravity the main object of interest is the noise kernel, the
vacuum expectation value of the (operator-valued) stress-energy bi-tensor, and
the centerpiece is the (stochastic) Einstein-Langevin equation. We describe
this new theory via two approaches: the axiomatic and the functional. The
axiomatic approach is useful to see the structure of the theory from the
framework of semiclassical gravity. The functional approach uses the
Feynman-Vernon influence functional and the Schwinger-Keldysh close-time-path
effective action methods which are convenient for computations. It also brings
out the open systems concepts and the statistical and stochastic contents of
the theory such as dissipation, fluctuations, noise and decoherence. We then
describe the application of stochastic gravity to the backreaction problems in
cosmology and black hole physics. Intended as a first introduction to this
subject, this article places more emphasis on pedagogy than completeness.Comment: 46 pages Latex. Intended as a review in {\it Classical and Quantum
Gravity
Wave Propagation in Stochastic Spacetimes: Localization, Amplification and Particle Creation
Here we study novel effects associated with electromagnetic wave propagation
in a Robertson-Walker universe and the Schwarzschild spacetime with a small
amount of metric stochasticity. We find that localization of electromagnetic
waves occurs in a Robertson-Walker universe with time-independent metric
stochasticity, while time-dependent metric stochasticity induces exponential
instability in the particle production rate. For the Schwarzschild metric,
time-independent randomness can decrease the total luminosity of Hawking
radiation due to multiple scattering of waves outside the black hole and gives
rise to event horizon fluctuations and thus fluctuations in the Hawking
temperature.Comment: 26 pages, 1 Postscript figure, submitted to Phys. Rev. D on July 29,
199
Fractional Distillation of Bio-Oil Produced by Pyrolysis of Açaà (Euterpe oleracea) Seeds
In this work, the seeds of açaà (Euterpe oleracea, Mart), a rich lignin-cellulose residue, has been submitted to pyrolysis to produce a bio-oil-like fossil fuels. The pyrolysis carried out in a reactor of 143 L, 450°C, and 1.0 atm. The morphology of Açaà seeds in nature and after pyrolysis is characterized by SEM, EDX, and XRD. The experiments show that bio-oil, gas, and coke yields were 4.38, 30.56, and 35.67% (wt.), respectively. The bio-oil characterized by AOCS, ASTM, and ABNT/NBR methods for density, kinematic viscosity, and acid value. The bio-oil density, viscosity, and acid value were 1.0468 g/cm3, 68.34 mm2/s, and 70.26 KOH/g, respectively. The chemical composition and chemical functions of bio-oil are determined by GC-MS and FT-IR. The GC-MS identified in bio-oil 21.52% (wt.) hydrocarbons and 78.48% (wt.) oxygenates (4.06% esters, 8.52% carboxylic acids, 3.53% ketones, 35.16% phenols, 20.52% cresols, 5.75% furans, and 0.91% (wt.) aldehydes), making it possible to apply fractional distillation to obtain fossil fuel-like fractions rich in hydrocarbons. The distillation of bio-oil is carried out in a laboratory-scale column, according to the boiling temperature of fossil fuels. The distillation of bio-oil yielded fossil fuel-like fractions (gasoline, kerosene, and light diesel) of 4.70, 28.21, and 22.35% (wt.), respectively
Superconductivity and a Mott Transition in a Hubbard Model on an Anisotropic Triangular Lattice
A half-filled-band Hubbard model on an anisotropic triangular lattice (t in
two bond directions and t' in the other) is studied using an optimization
variational Monte Carlo method, to consider the Mott transition and
superconductivity arising in \kappa-BEDT-TTF_2X. Adopting wave functions with
doublon-holon binding factors, we reveal that a first-order Mott
(conductor-to-nonmagnetic insulator) transition takes place at U=U_c
approximately of the band width, for a wide range of t'/t. This transition is
not directly connected to magnetism. Robust d-wave superconductivity appears in
a restricted parameter range: immediately below U_c and moderate strength of
frustration (0.4\lsim t'/t\lsim 0.7), where short-range antiferromagnetic
correlation sufficiently develops but does not come to a long-range order. The
relevance to experiments is also discussed.Comment: 15 pages, 17 figures, submitted to J. Phys. Soc. Jp
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
- âŠ