36 research outputs found

    Nanocolloidal albumin-IRDye 800CW: a near-infrared fluorescent tracer with optimal retention in the sentinel lymph node

    Get PDF
    Purpose: At present, the only approved fluorescent tracer for clinical near-infrared fluorescence-guided sentinel node (SN) detection is indocyanine green (ICG), but the use of this tracer is limited due to its poor retention in the SN resulting in the detection of higher tier nodes. We describe the development and characterization of a next-generation fluorescent tracer, nanocolloidal albumin-IRDye 800CW that has optimal properties for clinical SN detection Methods: The fluorescent dye IRDye 800CW was covalently coupled to colloidal human serum albumin (HSA) particles present in the labelling kit Nanocoll in a manner compliant with current Good Manufacturing Practice. Characterization of nanocolloidal albumin-IRDye 800CW included determination of conjugation efficiency, purity, stability and particle size. Quantum yield was determined in serum and compared to that of ICG. For in vivo evaluation a lymphogenic metastatic tumour model in rabbits was used. Fluorescence imaging was performed directly after peritumoral injection of nanocolloidal albumin-IRDye 800CW or the reference ICG/HSA (i.e. ICG mixed with HSA), and was repeated after 24 h, after which fluorescent lymph nodes were excised. Results: Conjugation of IRDye 800CW to nanocolloidal albumin was always about 50% efficient and resulted in a stable and pure product without affecting the particle size of the nanocolloidal albumin. The quantum yield of nanocolloidal albumin-IRDye 800CW was similar to that of ICG. In vivo evaluation revealed noninvasive detection of the SN within 5 min of injection of either nanocolloidal albumin-IRDye 800CW or ICG/HSA. No decrease in the fluorescence signal from SN was observed 24 h after injection of the nanocolloidal albumin-IRDye 800CW, while a strong decrease or complete disappearance of the fluorescence signal was seen 24 h after injection of ICG/HSA. Fluorescence-guided SN biopsy was very easy. Conclusion: Nanocolloidal albumin-IRDye 800CW is a promising fluorescent tracer with optimal kinetic features for SN detection. © The Author(s) 2012

    Multidisciplinary Approach to Unravelling the Relative Contribution of Different Oxylipins in Indirect Defense of Arabidopsis thaliana

    Get PDF
    The oxylipin pathway is commonly involved in induced plant defenses, and is the main signal-transduction pathway induced by insect folivory. Herbivory induces the production of several oxylipins, and consequently alters the so-called ‘oxylipin signature’ in the plant. Jasmonic acid (JA), as well as pathway intermediates are known to induce plant defenses. Indirect defense against herbivorous insects comprises the production of herbivore-induced plant volatiles (HIPVs). To unravel the precise oxylipin signal-transduction underlying the production of HIPVs in Arabidopsis thaliana and the resulting attraction of parasitoid wasps, we used a multidisciplinary approach that includes molecular genetics, metabolite analysis, and behavioral analysis. Mutant plants affected in the jasmonate pathway (18:0 and/or 16:0 -oxylipin routes; mutants dde2-2, fad5, opr3) were studied to assess the effects of JA and its oxylipin intermediates 12-oxo-phytodienoate (OPDA) and dinor-OPDA (dnOPDA) on HIPV emission and parasitoid (Diadegma semiclausum) attraction. Interference with the production of the oxylipins JA and OPDA altered the emission of HIPVs, in particular terpenoids and the phenylpropanoid methyl salicylate, which affected parasitoid attraction. Our data show that the herbivore-induced attraction of parasitoid wasps to Arabidopsis plants depends on HIPVs that are induced through the 18:0 oxylipin-derivative JA. Furthermore, our study shows that the 16:0-oxylipin route towards dnOPDA does not play a role in HIPV induction, and that the role of 18:0 derived oxylipin-intermediates, such as OPDA, is either absent or limited

    Distribution of signs and symptoms of Complex Regional Pain Syndrome type I in patients meeting the diagnostic criteria of the international association for the study of pain

    No full text
    The aim of the present study was to describe the occurrence of signs and symptoms in CRPS I patients meeting the IASP (Orlando) criteria, assess the occurrence of signs and symptoms in relation to disease duration and compare these to historical data based on a different diagnostic criteria set. Six hundred and ninety-two ambulatory patients meeting the IASP criteria for CRPS I referred to the outpatient clinics of five participating centers were included in this cross-sectional study. Characteristics were recorded in a standardized fashion and categorized according to the factor structure proposed by Bruehl/Harden. Subgroups were classified according to the duration of complaints and compared to historical data as described by Veldman et al. The Chi-square test corrected for multiple comparisons was used for statistical analysis. The prevalence of sensory signs was higher in patients with longer disease duration, especially for the allodynia's and hyperalgesia (all p 6 months). Prevalences of signs in the motor subgroup were all higher (p < 0.0001) in patients with longer disease duration, except for limited range of motion. Occurrence of signs was significantly lower (<0.001) than those reported by Veldman et al., except for hyperesthesia and dystonia. Occurrence rates may vary at different time points after onset of CRPS, which may be of influence for diagnosing patients with novel derived diagnostic criteria. We argue for a mechanism based description of CRPS I based on one set of uniform generally accepted diagnostic criteria in future studies

    Penetrance and Prognosis of MYH7 Variant-Associated Cardiomyopathies: Results From a Dutch Multicenter Cohort Study

    No full text
    Background: MYH7 variants cause hypertrophic cardiomyopathy (HCM), noncompaction cardiomyopathy (NCCM), and dilated cardiomyopathy (DCM). Screening of relatives of patients with genetic cardiomyopathy is recommended from 10 to 12 years of age onward, irrespective of the affected gene. Objectives: This study sought to study the penetrance and prognosis of MYH7 variant-associated cardiomyopathies. Methods: In this multicenter cohort study, penetrance and major cardiomyopathy-related events (MCEs) were assessed in carriers of (likely) pathogenic MYH7 variants by using Kaplan-Meier curves and log-rank tests. Prognostic factors were evaluated using Cox regression with time-dependent coefficients. Results: In total, 581 subjects (30.1% index patients, 48.4% male, median age 37.0 years [IQR: 19.5-50.2 years]) were included. HCM was diagnosed in 226 subjects, NCCM in 70, and DCM in 55. Early penetrance and MCEs (age <12 years) were common among NCCM-associated variant carriers (21.2% and 12.0%, respectively) and DCM-associated variant carriers (15.3% and 10.0%, respectively), compared with HCM-associated variant carriers (2.9% and 2.1%, respectively). Penetrance was significantly increased in carriers of converter region variants (adjusted HR: 1.87; 95% CI: 1.15-3.04; P = 0.012) and at age ≤1 year in NCCM-associated or DCM-associated variant carriers (adjusted HR: 21.17; 95% CI: 4.81-93.20; P < 0.001) and subjects with a family history of early MCEs (adjusted HR: 2.45; 95% CI: 1.09-5.50; P = 0.030). The risk of MCE was increased in subjects with a family history of early MCEs (adjusted HR: 1.82; 95% CI: 1.15-2.87; P = 0.010) and at age ≤5 years in NCCM-associated or DCM-associated variant carriers (adjusted HR: 38.82; 95% CI: 5.16-291.88; P < 0.001). Conclusions: MYH7 variants can cause cardiomyopathies and MCEs at a young age. Screening at younger ages may be warranted, particularly in carriers of NCCM- or DCM-associated variants and/or with a family history of MCEs at <12 years

    Penetrance and Prognosis of MYH7 Variant-Associated Cardiomyopathies: Results From a Dutch Multicenter Cohort Study

    No full text
    BACKGROUND: MYH7 variants cause hypertrophic cardiomyopathy (HCM), noncompaction cardiomyopathy (NCCM), and dilated cardiomyopathy (DCM). Screening of relatives of patients with genetic cardiomyopathy is recommended from 10 to 12 years of age onward, irrespective of the affected gene. OBJECTIVES: This study sought to study the penetrance and prognosis of MYH7 variant-associated cardiomyopathies. METHODS: In this multicenter cohort study, penetrance and major cardiomyopathy-related events (MCEs) were assessed in carriers of (likely) pathogenic MYH7 variants by using Kaplan-Meier curves and log-rank tests. Prognostic factors were evaluated using Cox regression with time-dependent coefficients. RESULTS: In total, 581 subjects (30.1% index patients, 48.4% male, median age 37.0 years [IQR: 19.5-50.2 years]) were included. HCM was diagnosed in 226 subjects, NCCM in 70, and DCM in 55. Early penetrance and MCEs (age <12 years) were common among NCCM-associated variant carriers (21.2% and 12.0%, respectively) and DCM-associated variant carriers (15.3% and 10.0%, respectively), compared with HCM-associated variant carriers (2.9% and 2.1%, respectively). Penetrance was significantly increased in carriers of converter region variants (adjusted HR: 1.87; 95% CI: 1.15-3.04; P = 0.012) and at age ≤1 year in NCCM-associated or DCM-associated variant carriers (adjusted HR: 21.17; 95% CI: 4.81-93.20; P < 0.001) and subjects with a family history of early MCEs (adjusted HR: 2.45; 95% CI: 1.09-5.50; P = 0.030). The risk of MCE was increased in subjects with a family history of early MCEs (adjusted HR: 1.82; 95% CI: 1.15-2.87; P = 0.010) and at age ≤5 years in NCCM-associated or DCM-associated variant carriers (adjusted HR: 38.82; 95% CI: 5.16-291.88; P < 0.001). CONCLUSIONS: MYH7 variants can cause cardiomyopathies and MCEs at a young age. Screening at younger ages may be warranted, particularly in carriers of NCCM- or DCM-associated variants and/or with a family history of MCEs at <12 years

    Penetrance and Prognosis of MYH7 Variant-Associated Cardiomyopathies:Results From a Dutch Multicenter Cohort Study

    Get PDF
    Background: MYH7 variants cause hypertrophic cardiomyopathy (HCM), noncompaction cardiomyopathy (NCCM), and dilated cardiomyopathy (DCM). Screening of relatives of patients with genetic cardiomyopathy is recommended from 10 to 12 years of age onward, irrespective of the affected gene. Objectives: This study sought to study the penetrance and prognosis of MYH7 variant-associated cardiomyopathies.Methods:In this multicenter cohort study, penetrance and major cardiomyopathy-related events (MCEs) were assessed in carriers of (likely) pathogenic MYH7 variants by using Kaplan-Meier curves and log-rank tests. Prognostic factors were evaluated using Cox regression with time-dependent coefficients. Results: In total, 581 subjects (30.1% index patients, 48.4% male, median age 37.0 years [IQR: 19.5-50.2 years]) were included. HCM was diagnosed in 226 subjects, NCCM in 70, and DCM in 55. Early penetrance and MCEs (age &lt;12 years) were common among NCCM-associated variant carriers (21.2% and 12.0%, respectively) and DCM-associated variant carriers (15.3% and 10.0%, respectively), compared with HCM-associated variant carriers (2.9% and 2.1%, respectively). Penetrance was significantly increased in carriers of converter region variants (adjusted HR: 1.87; 95% CI: 1.15-3.04; P = 0.012) and at age ≤1 year in NCCM-associated or DCM-associated variant carriers (adjusted HR: 21.17; 95% CI: 4.81-93.20; P &lt; 0.001) and subjects with a family history of early MCEs (adjusted HR: 2.45; 95% CI: 1.09-5.50; P = 0.030). The risk of MCE was increased in subjects with a family history of early MCEs (adjusted HR: 1.82; 95% CI: 1.15-2.87; P = 0.010) and at age ≤5 years in NCCM-associated or DCM-associated variant carriers (adjusted HR: 38.82; 95% CI: 5.16-291.88; P &lt; 0.001). Conclusions: MYH7 variants can cause cardiomyopathies and MCEs at a young age. Screening at younger ages may be warranted, particularly in carriers of NCCM- or DCM-associated variants and/or with a family history of MCEs at &lt;12 years.</p

    DUTCH CROSSINGS

    No full text

    Measurements of the center-of-mass energies of e+e- collisions at BESIII

    No full text
    During the 2016-17 and 2018-19 running periods, the BESIII experiment collected 7.5 fb -1 of e+e− collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV. These data samples are primarily used for the study of excited charmonium and charmoniumlike states. By analyzing the di-muon process e+e− (γISR/FSR)µ -> +µ-, we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV. Through a run-by-run study, we find that the center-of-mass energies were stable throughout most of the data-collection period

    Measurements of the center-of-mass energies of e+e− collisions at BESIII

    No full text
    During the 2016-17 and 2018-19 running periods, the BESIII experiment collected 7.5~fb−1 of e+e− collision data at center-of-mass energies ranging from 4.13 to 4.44~GeV. These data samples are primarily used for the study of excited charmonium and charmoniumlike states. By analyzing the di-muon process e+e−→(γISR/FSR)μ+μ−, we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV. Through a run-by-run study, we find that the center-of-mass energies were stable throughout most of the data-taking period

    Observation of D → a₀(980)π in the decays D⁰ → π⁺π^(−)η and D⁺ → π⁺π⁰η

    No full text
    We report the first amplitude analysis of the decays D0→π+π−η and D+→π+π0η using a data sample taken with the BESIII detector at the center-of-mass energy of 3.773 GeV, corresponding to an integrated luminosity of 7.9 fb−1. The contribution from the process D0(+)→a0(980)+π−(0) is significantly larger than the D0(+)→a0(980)−(0)π+ contribution. The ratios B(D0→a0(980)+π−)/B(D0→a0(980)−π+) and B(D+→a0(980)+π0)/B(D+→a0(980)0π+) are measured to be 7.5+2.5−0.8stat.±1.7syst. and 2.6±0.6stat.±0.3syst., respectively. The measured D0 ratio disagrees with the theoretical predictions by orders of magnitudes, thus implying a substantial contribution from final-state interactions
    corecore