465 research outputs found

    Two Dimensional Quantum Dilaton Gravity and the Positivity of Energy

    Full text link
    Using an argument due to Regge and Teitelboim, an expression for the ADM mass of 2d quantum dilaton gravity is obtained. By evaluating this expression we establish that the quantum theories which can be written as a Liouville-like theory, have a lower bound to energy, provided there is no critical boundary. This fact is then reconciled with the observation made earlier that the Hawking radiation does not appear to stop. The physical picture that emerges is that of a black hole in a bath of quantum radiation. We also evaluate the ADM mass for the models with RST boundary conditions and find that negative values are allowed. The Bondi mass of these models goes to zero for large retarded times, but becomes negative at intermediate times in a manner that is consistent with the thunderpop of RST.Comment: 16 pages, phyzzx, COLO-HEP-309. (Confusing points in previous version clarified, discussion of ADM and Bondi masses in RST case added.

    Brane Worlds, the Cosmological Constant and String Theory

    Get PDF
    We argue that traditional methods of compactification of string theory make it very difficult to understand how the cosmological constant becomes zero. String inspired models can give zero cosmological constant after fine tuning but since string theory has no free parameters it is not clear that this is allowed. Brane world scenarios on the other hand while they do not answer the question as to why the cosmological constant is zero do actually allow a choice of integration constants that permit flat four space solutions. In this paper we discuss gauged supergravity realizations of such a world. To the extent that this starting point can be considered a low energy effective action of string theory (and there is some recent evidence supporting this) our model may be considered a string theory realization of this scenario.Comment: 18 pages, 5 figures. Shorter version and a few new comments adde

    Semi-classical Approach to Charged Dilatonic Black Hole in Two Dimensions

    Full text link
    We consider exactly solvable semi-classical theory of two dimensional dilatonic gravity with electromagnetic interactions. As was done in the paper by Russo, Susskind and Thorlacius, the term which changes the kinetic term is added to the action. The theory contains massless fermions as matter fields and there appear the quantum corrections including chiral anomaly. The screening effect due to the chiral anomaly has a tendency to cloak the singularity. In a region of the parameter space, the essential behavior of the theory is similar to that of Callan, Giddings, Harvey and Strominger's dilatonic black hole theory modified in the paper by Russo, Susskind and Thorlacius and the singularity formed by the collapsing matter emerges naked. We find, however, another region of the parameter space where the singularity disappears in a finite proper time. Furthermore, in the region of the parameter space, there appears a discontinuity in the metric on the trajectory of the collapsing matter, which would be a signal of topology changeComment: 21pp, NDA-FP-5/92, OCHA-PP-2

    Duality of Super D-brane Actions in General Type IIB Supergravity Background

    Get PDF
    We examine duality transformations of supersymmetric and Îş\kappa-symmetric Dp-brane actions in a general type II supergravity background where in particular the dilaton and the axion are supposed to not be zero or a constant but a general superfield. Due to non-constant dilaton and axion, we can explicitly show that the dilaton and the axion as well as the two 2-form gauge potentials transform as doublets under the SL(2,R)SL(2,R) transformation from the point of view of the world-volume field theory.Comment: 32 pages, LaTex 2

    The Problem of Time and Quantum Black Holes

    Full text link
    We discuss the derivation of the so-called semi-classical equations for both mini-superspace and dilaton gravity. We find that there is no systematic derivation of a semi-classical theory in which quantum mechanics is formulated in a space-time that is a solution of Einstein's equation, with the expectation value of the matter stress tensor on the right-hand side. The issues involved are related to the well-known problems associated with the interpretation of the Wheeler-deWitt equation in quantum gravity, including the problem of time. We explore the de Broglie-Bohm interpretation of quantum mechanics (and field theory) as a way of spontaneously breaking general covariance, and thereby giving meaning to the equations that many authors have been using to analyze black hole evaporation. We comment on the implications for the ``information loss" problem.Comment: 30 pages, COLO-HEP-33

    Dimensional reduction from entanglement in Minkowski space

    Full text link
    Using a quantum field theoretic setting, we present evidence for dimensional reduction of any sub-volume of Minkowksi space. First, we show that correlation functions of a class of operators restricted to a sub-volume of D-dimensional Minkowski space scale as its surface area. A simple example of such area scaling is provided by the energy fluctuations of a free massless quantum field in its vacuum state. This is reminiscent of area scaling of entanglement entropy but applies to quantum expectation values in a pure state, rather than to statistical averages over a mixed state. We then show, in a specific case, that fluctuations in the bulk have a lower-dimensional representation in terms of a boundary theory at high temperature.Comment: 9 pages, changes to presentation, some content corrections, version published in JHE

    Semiclassical Approach to Black Hole Evaporation

    Get PDF
    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two dimensional black hole models. The first is the original CGHS model, the second is another two dimensional dilaton-gravity model, but with properties much closer to physics in the real, four dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are found to agree qualitatively with the exactly solved modified CGHS models, namely that the semiclassical approximation breaks down just before a naked singularity appears.Comment: 15 pages, PUPT-1340, harvmac, 11 figures available on reques

    Storage life of silverbelly (Leiognathus sp.) with delayed icing

    Get PDF
    Silver belly (leiognathus splendens) caught in September spoiled faster than the fish caught in May. This could be due to seasonal changes. For silver belly, Total Volatile Base (TVB) value could be used as a measure of spoilage. At the beginning of spoilage TVB value is between 30-40 mg. N/100g sample. The main spoilage for silver belly appears to start between 6 and 8 hours (at 28° C-30°C) after landing on board. Therefore it is not necessary to ice silverbelly immediately; it seems to be sufficient if icing can be done within 6 hours of landing on board

    Hamiltonian Approach to 2D Dilaton-Gravities and Invariant Adm Mass

    Full text link
    The formula existing in the literature for the ADM mass of 2D dilaton gravity is incomplete. For example, in the case of an infalling matter shockwave this formula fails to give a time-independent mass, unless a very special coordinate system is chosen. We carefully carry out the canonical formulation of 2D dilaton gravity theories (classical, CGHS and RST). As in 4D general relativity one must add a boundary term to the bulk Hamiltonian to obtain a well-defined variational problem. This boundary term coincides with the numerical value of the Hamiltonian and gives the correct mass which obviously is time-independent.Comment: revised, 12 pages, PUPT-1379; we added a reference and corrected some minor typo

    Black Hole Formation by Sine-Gordon Solitons in Two-dimensional Dilaton Gravity

    Get PDF
    The CGHS model of two-dimensional dilaton gravity coupled to a sine-Gordon matter field is considered. The theory is exactly solvable classically, and the solutions of a kink and two-kink type solitons are studied in connection with black hole formation.Comment: 11 pages, no figures, revte
    • …
    corecore