8 research outputs found

    TWIST1 regulates proliferation, migration, and invasion and is a prognostic marker for oral tongue squamous cell carcinoma

    No full text
    Abstract Background: Epithelial–mesenchymal transition is one of the main mechanisms for tumor progression and metastasis. Transcription factors such as TWIST1 are key regulators of the epithelial–mesenchymal transition and are regarded as potential therapeutic targets for the treatment of cancer. The purpose of this study was to examine TWIST1 as a possible epithelial-mesenchymal transition-related prognostic biomarker in oral epithelial dysplasia and oral tongue squamous cell carcinomas, as well as the biological behavior of TWIST1-silencing in oral tongue squamous cell carcinomas cell lines. Methods: Immunohistochemical analysis of TWIST1, E-cadherin, and N-cadherin was carried out in 47 samples representing oral epithelial dysplasia and 41 oral tongue squamous cell carcinomas. The suppression of TWIST1 expression was performed using shRNA-expression vectors in HSC-3 and SCC-9 cells to investigate in vitro the impact of TWIST1 on proliferation, apoptosis, viability, migration, and invasion of SCC-9 and HSC-3 cells. Results: The expression of nuclear TWIST1 was significantly higher in oral tongue squamous cell carcinomas than in oral epithelial dysplasis (p < 0.0001), whereas TWIST1 in the cytoplasm was more expressed in oral epithelial dysplasis (p = 0.012). The high cytoplasmic expression of TWIST1 was significantly associated with shortened overall survival (p < 0.05), and increased nuclear TWIST1 expression was significantly related to high risk of recurrence (p = 0.03). Knockdown of TWIST1 in oral tongue squamous cell carcinomas cells induced the expression of E-cadherin and inhibited N-cadherin, which were followed by decreased proliferation, migration, and invasion. Conclusions: Our research suggests that TWIST1 is linked to the development of oral tongue carcinogenesis and may be used as a prognostic indicator and therapeutic target for oral tongue squamous cell carcinomas patients

    Extracellular vesicles from oral squamous carcinoma cells display pro- and antiangiogenic properties

    No full text
    Abstract Background: A new intercellular communication mode established by neoplastic cells and tumor microenvironment components is based on extracellular vesicles (EVs). However, the biological effects of the EVs released by tumor cells on angiogenesis are not completed understood. Here we aimed to understand the biological effects of EVs isolated from two cell lines of oral squamous cell carcinoma (OSCC) (SCC15 and HSC3) on endothelial cell tubulogenesis. Methods: OSCC-derived EVs were isolated with a polymer-based precipitation method, quantified using nanoparticle tracking analysis and verified for EV markers by dot-blot. Functional assays were performed to assess the angiogenic potential of the OSCC-derived EVs. Results: The results showed that EVs derived from both cell lines displayed typical spherical-shaped morphology and expressed the EV markers CD63 and Annexin II. Although the average particle concentration and size were quite similar, SCC15-derived EVs promoted a pronounced tubular formation associated with significant migration and apoptosis rates of the endothelial cells, whereas EVs derived from HSC3 cells inhibited significantly endothelial cell tubulogenesis and proliferation. Conclusions: The findings of this study reveal that EVs derived from different OSCC cell lines by a polymer-based precipitation method promote pro- or antiangiogenic effects

    Stanniocalcin 2 contributes to aggressiveness and is a prognostic marker for oral squamous cell carcinoma

    No full text
    Abstract Stanniocalcin 2 (STC2), a glycoprotein that regulates calcium and phosphate homeostasis during mineral metabolism, appears to display multiple roles in tumorigenesis and cancer progression. This study aimed to access the prognostic value of STC2 in oral squamous cell carcinoma (OSCC) and its implications in oral tumorigenesis. STC2 expression was examined in 2 independent cohorts of OSCC tissues by immunohistochemistry. A loss-of-function strategy using shRNA targeting STC2 was employed to investigate STC2 in vitro effects on proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT) and possible activation of signaling pathways. Moreover, STC2 effects were assessed in vivo in a xenograft mouse cancer model. High expression of STC2 was significantly associated with poor disease-specific survival (HR: 2.67, 95% CI: 1.37–5.21, p = 0.001) and high rate of recurrence with a hazard ratio of 2.80 (95% CI: 1.07–5.71, p = 0.03). In vitro downregulation of STC2 expression in OSCC cells attenuated proliferation, migration and invasiveness while increased apoptotic rates. In addition, the STC2 downregulation controlled EMT phenotype of OSCC cells, with regulation on E-cadherin, vimentin, Snail1, Twist and Zeb2. The reactivation of STC2 was observed in the STC2 knockdown cells in the in vivo xenograft model, and no influence on tumor growth was observed. Modulation of STC2 expression levels did not alter consistently the phosphorylation status of CREB, ERK, JNK, p38, p70 S6K, STAT3, STAT5A/B and AKT. Our findings suggest that STC2 overexpression is an independent marker of OSCC outcome and may contribute to tumor progression via regulation of proliferation, survival and invasiveness of OSCC cells
    corecore