2,318 research outputs found

    Hund's metals, explained

    Full text link
    A possible practical definition for a Hund's metal is given, as a metallic phase - arising consistently in realistic simulations and experiments in Fe-based superconductors and other materials - with three features: large electron masses, high-spin local configurations dominating the paramagnetic fluctuations and orbital-selective correlations. These features are triggered by, and increase with the proximity to, a Hund's coupling-favored Mott insulator that is realized for half-filled conduction bands. A clear crossover line is found where these three features get enhanced, departing from the Mott transition at half filling and extending in the interaction/doping plane, between a normal (at weak interaction and large doping) and a Hund's metal (at strong interaction and small doping). This phenomenology is found identically in models with featureless bands, highlighting the generality of this physics and its robustness by respect to the details of the material band structures. Some analytical arguments are also given to gain insight into these defining features. Finally the attention is brought on the recent theoretical finding of enhanced/diverging electronic compressibility near the Hund's metal crossover, pointing to enhanced quasiparticle interactions that can cause or boost superconductivity or other instabilities.Comment: Lecture prepared for the Autumn School on Correlated Electrons, 25-29 September 2017, Juelich. To appear on: E. Pavarini, E. Koch, R. Scalettar, and R. Martin (eds.) The Physics of Correlated Insulators, Metals, and Superconductors Modeling and Simulation Vol. 7 Forschungszentrum Juelich, 2017, ISBN 978-3-95806-224-5 http://www.cond- mat.de/events/correl1

    Hund-enhanced electronic compressibility in FeSe and its correlation with Tc_c

    Full text link
    We compute the compressibility of the conduction electrons in both bulk orthorhombic FeSe and monolayer FeSe on SrTiO3_3 substrate, including dynamical electronic correlations within slave-spin mean-field + density-functional theory. Results show a zone of enhancement of the electronic compressibility crossing the interaction-doping phase diagram of these compounds in accord with previous simulations on iron pnictides and in general with the phenomenology of Hund's metals. Interestingly at ambient pressure FeSe is found slightly away from the zone with enhanced compressibility but moved right into it with hydrostatic pressure, while in monolayer FeSe the stronger enhancement region is realized on the electron-doped side. These findings correlate positively with the enhancement of superconductivity seen in experiments, and support the possibility that Hund's induced many-body correlations boost superconductive pairing when the system is at the frontier of the normal- to Hund's-metal crossover.Comment: 6 pages, 2 figure

    Non-Fermi Liquid Behavior and Double-Exchange Physics in Orbital-Selective Mott Systems

    Full text link
    We study a multi-band Hubbard model in its orbital selective Mott phase, in which localized electrons in a narrow band coexist with itinerant electrons in a wide band. The low-energy physics of this phase is shown to be closely related to that of a generalized double-exchange model. The high-temperature disordered phase thus differs from a Fermi liquid, and displays a finite scattering rate of the conduction electrons at the Fermi level, which depends continuously on the spin anisotropy.Comment: 5 pages, minor typos correcte

    Slave spin cluster mean field theory away from half-filling: Application to the Hubbard and the extended Hubbard Model

    Full text link
    A new slave-spin representation of fermion operators has recently been proposed for the half-filled Hubbard model. We show that with the addition of a gauge variable, the formalism can be extended to finite doping. The resulting spin problem can be solved using the cluster mean-field approximation. This approximation takes short-range correlations into account by exact diagonalization on the cluster, whereas long-range correlations beyond the size of clusters are treated at the mean-field level. In the limit where the cluster has only one site and the interaction strength UU is infinite, this approach reduces to the Gutzwiller approximation. There are some qualitative differences when the size of the cluster is finite. We first compute the critical UU for the Mott transition as a function of a frustrating second-neighbor interaction on lattices relevant for various correlated systems, namely the cobaltites, the layered organic superconductors and the high-temperature superconductors. For the triangular lattice, we also study the extended Hubbard model with nearest-neighbor repulsion. In additionto a uniform metallic state, we find a (3)×(3)\sqrt(3) \times \sqrt(3) charge density wave in a broad doping regime, including commensurate ones. We find that in the large UU limit, intersite Coulomb repulsion VV strongly suppresses the single-particle weight of the metallic state.Comment: 10 pages, 11 figures, submitted to PR

    Role of oxygen-oxygen hopping in the three-band copper-oxide model: quasiparticle weight, metal insulator and magnetic phase boundaries, gap values and optical conductivity

    Full text link
    We investigate the effect of oxygen-oxygen hopping on the three-band copper-oxide model relevant to high-TcT_c cuprates, finding that the physics is changed only slightly as the oxygen-oxygen hopping is varied. The location of the metal-insulator phase boundary in the plane of interaction strength and charge transfer energy shifts by 0.5\sim 0.5eV or less along the charge transfer axis, the quasiparticle weight has approximately the same magnitude and doping dependence and the qualitative characteristics of the electron-doped and hole-doped sides of the phase diagram do not change. The results confirm the identification of La2_2CuO4_4 as a material with intermediate correlation strength. However, the magnetic phase boundary as well as higher-energy features of the optical spectrum are found to depend on the magnitude of the oxygen-oxygen hopping. We compare our results to previously published one-band and three-band model calculations.Comment: 13.5 pages, 16 figure

    Antiferromagnetism and the gap of a Mott insulator: Results from analytic continuation of the self-energy

    Full text link
    Direct analytic continuation of the self energy is used to determine the effect of antiferromagnetic ordering on the spectral function and optical conductivity of a Mott insulator. Comparison of several methods shows that the most robust estimation of the gap value is obtained by use of the real part of the continued self energy in the quasiparticle equation within the single-site dynamical mean field theory of the two dimensional square lattice Hubbard model, where for U slightly greater than the Mott critical value, antiferromagnetism increases the gap by about 80%.Comment: 8 pages, 9 figures. An error in normalization of optical conductivity (Fig. 9) corrected. to appear in Phys. Rev.

    Supersolidity, entropy and frustration

    Full text link
    We study the properties of t-t'-V model of hard-core bosons on the triangular lattice that can be realized in optical lattices. By mapping to the spin-1/2 XXZ model in a field, we determine the phase diagram of the t-V model where the supersolid characterized by the ordering pattern (x,x,-2x') ("ferrimagnetic" or SS A) is a ground state for chemical potential \mu >3V. By turning on either temperature or t' at half-filling \mu =3V, we find a first order transition from SS A to the elusive supersolid characterized by the (x,-x,0) ordering pattern ("antiferromagnetic" or SS C). In addition, we find a large region where a superfluid phase becomes a solid upon raising temperature at fixed chemical potential. This is an analog of the Pomeranchuk effect driven by the large entropic effects associated with geometric frustration on the triangular lattice.Comment: 4 pages, igures, LaTe

    Charge Disproportionation, Mixed Valence, and Janus Effect in Multiorbital Systems: A Tale of Two Insulators

    Get PDF
    Multiorbital Hubbard models host strongly correlated "Hund's metals" even for interactions much stronger than the bandwidth. We characterize this interaction-resilient metal as a mixed-valence state. In particular, it can be pictured as a bridge between two strongly correlated insulators: a high-spin Mott insulator and a charge-disproportionated insulator which is stabilized by a very large Hund's coupling. This picture is confirmed comparing models with negative and positive Hund's coupling for different fillings. Our results provide a characterization of the Hund's metal state and connect its presence with charge disproportionation, which has indeed been observed in chromates and proposed to play a role in iron-based superconductors
    corecore