research

Hund-enhanced electronic compressibility in FeSe and its correlation with Tc_c

Abstract

We compute the compressibility of the conduction electrons in both bulk orthorhombic FeSe and monolayer FeSe on SrTiO3_3 substrate, including dynamical electronic correlations within slave-spin mean-field + density-functional theory. Results show a zone of enhancement of the electronic compressibility crossing the interaction-doping phase diagram of these compounds in accord with previous simulations on iron pnictides and in general with the phenomenology of Hund's metals. Interestingly at ambient pressure FeSe is found slightly away from the zone with enhanced compressibility but moved right into it with hydrostatic pressure, while in monolayer FeSe the stronger enhancement region is realized on the electron-doped side. These findings correlate positively with the enhancement of superconductivity seen in experiments, and support the possibility that Hund's induced many-body correlations boost superconductive pairing when the system is at the frontier of the normal- to Hund's-metal crossover.Comment: 6 pages, 2 figure

    Similar works