6 research outputs found

    Relationship between the gene B-Cell-Specific Moloney Murine Leukemia Virus Integration Site 1 (BMI-1) and homologous recombination regulatory genes in invasive ductal breast carcinomas

    No full text
    Bmi-1 é uma proteína do grupo Polycomb capaz de induzir atividade de telomerase, levando à imortalização de células epiteliais. As células, quando imortalizadas, se tronam mais susceptíveis a danos em dupla fita (double-strand breaks (DSB))e a recombinação homóloga é uma das duas vias de reparo dos DSBs. Dentre os genes reguladores da recombinação homóloga temos o BRCA-1, que está envolvido na resposta ao dano associado à proteína RAD51, que por sua vez se acumula rapidamente nos focos de dano ao DNA após a sinalização do H2AX, que têm se mostrado um excelente marcador de dano celular por se acumular rapidamente nos focos de lesão, desencadeando o processo de reparo. Topoisomerase III (TopoIII) remove intermediários da recombinação homóloga antes da segregação de cromossomos, prevenindo danos à estrutura do DNA celular. O papel das proteínas envolvidas na recombinação homóloga, em carcinomas ductais invasores positivos para o BMI-1, necessita ser investigado. Utilizando-se tissue microarrays contendo 239 casos de carcinomas ductais mamários primários, foi analisada a expressão imunoistoquímica de BMI-1, receptor de estrógeno, receptor de progesterona, HER-2, Ki67, p53 e BRCA-1, H2AX, RAD51 e topoisomerase III. Positividade para o Bmi-1 foi encontrada em 66 casos (27.6%). A positividade imunoistoquímica do BMI-1 relacionou-se a RE (p=0,004), RP (p<0,001), Ki-67 (p < 0,001), p53 (p=0,003), BRCA-1(p= 0,003), H2AX (p= 0,024) e TopoIII (p < 0,001). Concluindo, nossos resultados mostraram haver relação entre o BMI-1 e genes reguladores da HR, sugerindo que a positividade de BMI-1 pode ser um importante evento na recombinação homóloga em carcinomas ductais invasores da mama.Bmi-1 is a Polycomb group protein which is able to induce telomerase activity, enabling the immortalization of epithelial cells. Immortalized cells shown more susceptible to double-strand breaks (DSB) and the homologous recombination (HR) are one of DSB repair pathways. Among the regulatory genes in HR, there is BRCA1, involved in the response to DNA damage associated with the RAD51 protein, which accumulates in DNA damage foci after signaling H2AX. H2AX has also been shown to be a good marker of DNA damage. Topoisomerase III (TopoIII) removes HR intermediates before the segregation of chromosomes, preventing damage to the structure of the cellular DNA. The role of proteins involved in HR, in breast carcinomas positive for BMI-1, remains to be investigated. The aim of this study was evaluate the association between BMI-1 and homologous recombination proteins. Using tissue microarrays containing 239 cases of primary breast tumors, the expression of Bmi-1, BRCA-1, H2AX, Rad51, p53, Ki-67, topoisomerase III, RE, RP and HER-2 was analyzed by immunohistochemistry. We observe high expression of Bmi-1 in 66 cases (27.6%). Immunohistochemistry overexpression of BMI-1 was related to RE (p=0,004), RP (p<0,001), Ki-67 (p < 0,001), p53 (p=0,003), BRCA-1(p= 0,003), H2AX (p= 0,024) and TopoIII (p < 0,001). Our results showed a relation between the expression of BMI-1 and HR regulatory genes, suggesting that overexpression of Bmi-1 is an important event in breast cancer homologous recombination

    Relationship between the gene B-Cell-Specific Moloney Murine Leukemia Virus Integration Site 1 (BMI-1) and homologous recombination regulatory genes in invasive ductal breast carcinomas

    No full text
    Bmi-1 é uma proteína do grupo Polycomb capaz de induzir atividade de telomerase, levando à imortalização de células epiteliais. As células, quando imortalizadas, se tronam mais susceptíveis a danos em dupla fita (double-strand breaks (DSB))e a recombinação homóloga é uma das duas vias de reparo dos DSBs. Dentre os genes reguladores da recombinação homóloga temos o BRCA-1, que está envolvido na resposta ao dano associado à proteína RAD51, que por sua vez se acumula rapidamente nos focos de dano ao DNA após a sinalização do H2AX, que têm se mostrado um excelente marcador de dano celular por se acumular rapidamente nos focos de lesão, desencadeando o processo de reparo. Topoisomerase III (TopoIII) remove intermediários da recombinação homóloga antes da segregação de cromossomos, prevenindo danos à estrutura do DNA celular. O papel das proteínas envolvidas na recombinação homóloga, em carcinomas ductais invasores positivos para o BMI-1, necessita ser investigado. Utilizando-se tissue microarrays contendo 239 casos de carcinomas ductais mamários primários, foi analisada a expressão imunoistoquímica de BMI-1, receptor de estrógeno, receptor de progesterona, HER-2, Ki67, p53 e BRCA-1, H2AX, RAD51 e topoisomerase III. Positividade para o Bmi-1 foi encontrada em 66 casos (27.6%). A positividade imunoistoquímica do BMI-1 relacionou-se a RE (p=0,004), RP (p<0,001), Ki-67 (p < 0,001), p53 (p=0,003), BRCA-1(p= 0,003), H2AX (p= 0,024) e TopoIII (p < 0,001). Concluindo, nossos resultados mostraram haver relação entre o BMI-1 e genes reguladores da HR, sugerindo que a positividade de BMI-1 pode ser um importante evento na recombinação homóloga em carcinomas ductais invasores da mama.Bmi-1 is a Polycomb group protein which is able to induce telomerase activity, enabling the immortalization of epithelial cells. Immortalized cells shown more susceptible to double-strand breaks (DSB) and the homologous recombination (HR) are one of DSB repair pathways. Among the regulatory genes in HR, there is BRCA1, involved in the response to DNA damage associated with the RAD51 protein, which accumulates in DNA damage foci after signaling H2AX. H2AX has also been shown to be a good marker of DNA damage. Topoisomerase III (TopoIII) removes HR intermediates before the segregation of chromosomes, preventing damage to the structure of the cellular DNA. The role of proteins involved in HR, in breast carcinomas positive for BMI-1, remains to be investigated. The aim of this study was evaluate the association between BMI-1 and homologous recombination proteins. Using tissue microarrays containing 239 cases of primary breast tumors, the expression of Bmi-1, BRCA-1, H2AX, Rad51, p53, Ki-67, topoisomerase III, RE, RP and HER-2 was analyzed by immunohistochemistry. We observe high expression of Bmi-1 in 66 cases (27.6%). Immunohistochemistry overexpression of BMI-1 was related to RE (p=0,004), RP (p<0,001), Ki-67 (p < 0,001), p53 (p=0,003), BRCA-1(p= 0,003), H2AX (p= 0,024) and TopoIII (p < 0,001). Our results showed a relation between the expression of BMI-1 and HR regulatory genes, suggesting that overexpression of Bmi-1 is an important event in breast cancer homologous recombination

    The relationship between lymphatic vascular density and vascular endothelial growth factor A (VEGF-A) expression with clinical-pathological features and survival in pancreatic adenocarcinomas

    Get PDF
    Abstract: Background Pancreatic cancer is a rare tumor with an extremely low survival rate. Its known risk factors include the chronic use of tobacco and excessive alcohol consumption and the presence of chronic inflammatory diseases, such as pancreatitis and type 2 diabetes. Angiogenesis and lymphangiogenesis, which have been the focus of recent research, are considered prognostic factors for cancer development. Knowing the angiogenic and lymphangiogenic profiles of a tumor may provide new insights for designing treatments according to the different properties of the tumor. The aim of this study was to evaluate the density of blood and lymphatic vessels, and the expression of VEGF-A, in pancreatic adenocarcinomas, as well as the relationship between blood and lymphatic vascular density and the prognostically important clinical-pathological features of pancreatic tumors. Methods Paraffin blocks containing tumor samples from 100 patients who were diagnosed with pancreatic cancer between 1990 and 2010 were used to construct a tissue microarray. VEGF expression was assessed in these samples by immunohistochemistry. To assess the lymphatic and vascular properties of the tumors, 63 cases that contained sufficient material were sectioned routinely. The sections were then stained with the D2-40 antibody to identify the lymphatic vessels and with a CD34 antibody to identify the blood vessels. The vessels were counted individually with the Leica Application Suite v4 program. All statistical analyses were performed using SPSS 18.0 (Chicago, IL, USA) software, and p values ≤ 0.05 were considered significant. Results In the Cox regression analysis, advanced age (p=0.03) and a history of type 2 diabetes (p=0.014) or chronic pancreatitis (p=0.02) were shown to be prognostic factors for pancreatic cancer. Blood vessel density (BVD) had no relationship with clinical-pathological features or death. Lymphatic vessel density (LVD) was inversely correlated with death (p=0.002), and by Kaplan-Meyer survival analysis, we found a significant association between low LVD (p=0.021), VEGF expression (p=0.023) and low patient survival. Conclusions Pancreatic carcinogenesis is related to a history of chronic inflammatory processes, such as type 2 diabetes and chronic pancreatitis. In pancreatic cancer development, lymphangiogenesis can be considered an early event that enables the dissemination of metastases. VEGF expression and low LVD can be considered as poor prognostic factors as tumors with this profile are fast growing and highly aggressive. Virtual slides. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/511389288102851

    Relationship between B-Cell-specific moloney murine leukemia virus integration site 1 (BMI-1) and homologous recombination regulatory genes in invasive ductal breast carcinomas

    No full text
    B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is a Polycomb group protein that is able to induce telomerase activity, enabling the immortalization of epithelial cells. Immortalized cells are more susceptible to double-strand breaks (DSB), which are subsequently repaired by homologous recombination (HR). BRCA1 is among the HR regulatory genes involved in the response to DNA damage associated with the RAD51 protein, which accumulates in DNA damage foci after signaling H2AX, another important marker of DNA damage. Topoisomerase IIIß (topoIIIß) removes HR intermediates before chromosomal segregation, preventing damage to cellular DNA structure. In breast carcinomas positive for BMI-1 the role of proteins involved in HR remains to be investigated. The aim of this study was to evaluate the association between BMI-1 and homologous recombination proteins. Using tissue microarrays containing 239 cases of primary breast tumors, the expression of Bmi-1, BRCA-1, H2AX, Rad51, p53, Ki-67, topoIIIß, estrogen receptors (ER), progesterone receptors (PR), and HER-2 was analyzed by immunohistochemistry. We observed high Bmi-1 expression in 66 cases (27.6%). Immunohistochemical overexpression of BMI-1 was related to ER (p=0.004), PR (p<0.001), Ki-67 (p<0.001), p53 (p=0.003), BRCA-1 (p= 0.003), H2AX (p=0.024) and topoIIIß (p<0,001). Our results show a relationship between the expression of BMI-1 and HR regulatory genes, suggesting that Bmi-1 overexpression might be an important event in HR regulation. However, further studies are necessary to understand the mechanisms in which Bmi-1 could regulate HR pathways in invasive ductal breast carcinomas

    CD44/CD24 immunophenotypes on clinicopathologic features of salivary glands malignant neoplasms

    Get PDF
    Abstract Background Salivary Glands Malignant Neoplasms (SGMNs) account for 3-6% of head and neck cancers and 0.3% of all cancers. Tumor cells that express CD44 and CD24 exhibit a stem-cell-like behavior. CD44 is the binding site for hyaluronic acid, and CD24 is a receptor that interacts with P-selectin to induce metastasis and tumor progression. The present study aims to evaluate the expression of CD44 and CD24 on SGMNs and correlated these data with several clinicopathologic features. Methods Immunohistochemical stains for CD44 and CD24 were performed on tissue microarrays containing SGMN samples from 69 patients. The CD44, CD24 and CD44/CD24 expression phenotypes were correlated to patient clinicopathologic features and outcome. Results CD44 expression was associated with the primary site of neoplasm (p = 0.046). CD24 was associated with clinical stage III/IV (p = 0.008), T stage (p = 0,27) and lymph node (p = 0,001). The CD44/CD24 profiles were associated with the primary site of injury (p = 0.005), lymph node (p = 0.011) and T stage (p = 0.023). Univariate analysis showed a significant relationship between clinical staging and disease- free survival (p = 0.009), and the overall survival presents relation with male gender (p = 0.011) and metastasis (p = 0.027). Conclusion In summary, our investigation confirms that the clinical stage, in accordance with the literature, is the main prognostic factor for SGMN. Additionally, we have presented some evidence that the analysis of isolated CD44 and CD24 immunoexpression or the two combined markers could give prognostic information associated to clinicopathologic features in SGMN. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1284611098470676
    corecore