384 research outputs found
Flow Resistance in Open Channel Due to Vegetation at Reach Scale: A Review
Vegetation on the banks and flooding areas of watercourses significantly affects energy losses. To take the latter into account, computational models make use of resistance coefficients based on the evaluation of bed and walls roughness besides the resistance to flow offered by vegetation. This paper, after summarizing the classical approaches based on descriptions and pictures, considers the recent advancements related to the analytical methods relative both to rigid and flexible vegetation. In particular, emergent rigid vegetation is first analyzed by focusing on the methods for determining the drag coefficient, then submerged rigid vegetation is analyzed, highlighting briefly the principles on which the different models are based and recalling the comparisons made in the literature. Then, the models used in the case of both emergent and submerged rigid vegetation are highlighted. As to flexible vegetation, the paper reminds first the flow conditions that cause the vegetation to lay on the channel bed, and then the classical resistance laws that were developed for the design of irrigation canals. The most recent developments in the case of submerged and emergent flexible vegetation are then presented. Since turbulence studies should be considered as the basis of flow resistance, even though the path toward practical use is still long, the new developments in the field of 3D numerical methods are briefly reviewed, presently used to assess the characteristics of turbulence and the transport of sediments and pollutants. The use of remote sensing to map riparian vegetation and estimating biomechanical parameters is briefly analyzed. Finally, some applications are presented, aimed at highlighting, in real cases, the influence exerted by vegetation on water depth and maintenance interventions
Discharge coefficients for sluice gates set in weirs at different ustream wall inclination
Laboratory experiments and numerical simulations are performed to measure discharge coecients in the case of a gate located on the upstream wall of a weir for flood storage. The eect of the gate slope and the side contraction have been taken into account. The study was first performed experimentally, when three series of tests were carried out with (and without) a broad crested weir located under the gate, at dierent values of the inclination angle of the weir upstream wall, and at dierent values of the shape ratio and the relative opening. In order to provide useful suggestions for those involved in sluice gate construction and management, three equations were obtained based on multiple regression, relating the discharge coecient to dierent parameters that characterize the phenomenon at hand, separating the case when the broad-crested weir was present. Then numerical simulations were executed by means of the Reynolds-averaged Navier–Stokes (RANS) equations with the k-" turbulence closure model and in conjunction with the volume of fluid (VOF) method, to validate the numerical results against the experimental and to possibly investigate phenomena not caught by the experimental measurements. Simulated discharges were very close to the observed ones showing that the proposed three-dimensional numerical procedure is a favorable option to correctly reproduce the phenomenon
Localization from inertial data and sporadic position measurements
A novel estimation strategy for inertial navigation in indoor/outdoor environments is proposed with a specific attention to the sporadic nature of the non-periodic measurements. After introducing the inertial navigation model, we introduce an observer providing an asymptotic estimate of the plant state. We use a hybrid dynamical systems representation for our results, in order to provide an effective, and elegant theoretical framework. The estimation error dynamics with the proposed observer shows a peculiar cascaded interconnection of three subsystems (allowing for intuitive gain tuning), with perturbations occurring either on the jump or on the flow dynamics (depending on the specific subsystem under consideration). For this structure, we show global exponential stability of the error dynamics. Hardware-in-the-loop results confirm the effectiveness of the proposed solution
Localization Based on Parallel Robots Kinematics as an Alternative to Trilateration
In this work a new scheme for range-based localization is proposed. The main goal is to estimate the position of a mobile point based on distance measurements from fixed devices, called anchors, and on inertial measurements. Due to the non-linear nature of the problem, an analytic relation to compute the position starting from these measurements does not exist, and often trilateration methods are used, generally based on least-square algorithms. The proposed scheme is based on the modelling of the localization process as a parallel robot, thereby methodologies and control algorithms used in the robotic area can be exploited. In particular, a closed loop control system is designed for tracking the position of a mobile point based on range measurements from fixed anchors, and it is shown a peculiar structure of the tracking error dynamics, whose allows an intuitive gain tuning and ensures global exponential stability. Moreover, it is also shown a nice connection between tuning parameters and rate of convergence of the estimation error. Experimental results confirm the validity of the proposed localization method
Autotrophic vs. Heterotrophic cultivation of the marine diatom cyclotella cryptica for epa production
Recently, the marketable value of ω-3 fatty acid, particularly eicosapentaenoic acid (EPA), increased considering their health effects for human consumption. Microalgae are considered a valuable and “green” source of EPA alternative to fish oils, but considerable efforts are necessary for their exploitation at an industrial level. Due to the high operation costs of photoautotrophic microalgae cultivation, heterotrophic growth represents a promising economic solution. Marine diatoms are the major ecological producers of ω-3 fatty acids. Few species of diatoms are capable to grow in the dark using organic carbon sources. The marine diatom Cyclotella cryptica was cultivated for 14 days under photoautotrophic and heterotrophic conditions to define the effects on growth parameters, lipid production, total fatty acids and EPA content. Photoautotrophic conditions led to a total EPA production of 1.6% of dry weight, 12.2 mg L−1 culture and productivity of 0.9 mg L−1 day−1 . The heterotrophy cultures reported a total EPA production of 2.7% of dry cell weight, 18 mg L−1 culture, a productivity of 1.3 mg L−1 day−1, which are promising values in the prospective of improving culture parameters for the biotechnological exploitation of dark cultivation. C. cryptica could be a potential candidate for the heterotrophic production of EPA, also considering its robustness, capacity to resist to bacterial contaminations and plasticity of lipid metabolism
Analysis of the effect of renal excretory system cooling during thermal radiofrequency ablation in an animal model
Analysis of renal excretory system integrity and efficacy of radiofrequency ablation with and without irrigation with saline at 2 o C (SF2). The median third of sixteen kidneys were submitted to radiofrequency (exposition of 1 cm) controlled by intra-surgical ultrasound, with eight minutes cycles and median temperature of 90 o C in eight female pigs. One excretory renal system was cooled with SF2, at a 30ml/min rate, and the other kidney was not. After 14 days of post-operatory, the biggest diameters of the lesions and the radiological aspects of the excretory system were compared by bilateral ascending pyelogram and the animals were sacrificed in order to perform histological analysis. There were no significant differences between the diameters of the kidney lesions whether or not exposed to cooling of the excretory system. Median diameter of the cooled kidneys and not cooled kidneys were respectively (in mm): anteroposterior: 11.46 vs. 12.5 (p = 0.23); longitudinal: 17.94 vs. 18.84 (p = 0.62); depth: 11.38 vs. 12.25 (p = 0.47). There was no lesion of the excretory system or signs of leakage of contrast media or hydronephrosis at ascending pyelogram. Cooling of excretory system during radiofrequency ablation does not significantly alter generated coagulation necrosis or affect the integrity of the excretory system in the studied model401939
Diagnostic factors for recurrent pregnancy loss: an expanded workup
Purpose: There is limited information on the risk factors for recurrent pregnancy loss (RPL). Methods: In this study, a patient-based approach was used to investigate the possible involvement and relative relevance of a large number of diagnostic factors in 843 women with RPL who underwent an extensive diagnostic workup including 44 diagnostic factors divided into 7 major categories. Results: The rates of abnormalities found were: (1) genital infections: 11.74%; (2) uterine anatomic defects: 23.72%; (3) endocrine disorders: 29.42%; (4) thrombophilias: 62%; (5) autoimmune abnormalities: 39.2%; (6) parental karyotype abnormalities 2.25%; (7) clinical factors: 87.78%. Six hundred and fifty-nine out of eight hundred and forty-three women (78.17%) had more than one abnormality. The mean number of pregnancy losses increased by increasing the number of the abnormalities found (r = 0.86949, P < 0.02). The factors associated with the highest mean number of pregnancy losses were cervical isthmic incompetence, anti-beta-2-glycoprotein-1 antibodies, unicornuate uterus, anti-prothrombin A antibodies, protein C deficiency, and lupus anticoagulant. The majority of the considered abnormalities had similar, non-significant prevalence between women with 2 versus ≥ 3 pregnancy losses with the exception of age ≥ 35 years and MTHFR A1298C heterozygote mutation. No difference was found between women with primary and secondary RPL stratified according to the number of abnormalities detected (Chi-square: 8.55, P = 0.07). In these women, the only factors found to be present with statistically different rates were age ≥ 35 years, cigarette smoking, and genital infection by Ureaplasma. Conclusion: A patient-based diagnostic approach in women with RPL could be clinically useful and could represent a basis for future research
- …