7 research outputs found

    Flat detector CT with cerebral pooled blood volume perfusion in the angiography suite : from diagnostics to treatment monitoring

    No full text
    C-arm flat-panel detector computed tomographic (CT) imaging in the angiography suite increasingly plays an important part during interventional neuroradiological procedures. In addition to conventional angiographic imaging of blood vessels, flat detector CT (FD CT) imaging allows simultaneous 3D visualization of parenchymal and vascular structures of the brain. Next to imaging of anatomical structures, it is also possible to perform FD CT perfusion imaging of the brain by means of cerebral blood volume (CBV) or pooled blood volume (PBV) mapping during steady state contrast administration. This enables more adequate decision making during interventional neuroradiological procedures, based on real-time insights into brain perfusion on the spot, obviating time consuming and often difficult transportation of the (anesthetized) patient to conventional cross-sectional imaging modalities. In this paper we review the literature about the nature of FD CT PBV mapping in patients and demonstrate its current use for diagnosis and treatment monitoring in interventional neuroradiology

    Transarterial Chemoembolization With Drug-Eluting Beads Versus Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma: Outcomes From a Multicenter, Randomized, Phase 2 Trial (the TRENDY Trial)

    Get PDF
    Purpose: To compare transarterial chemoembolization delivered with drug eluting beads (TACE-DEB) with stereotactioc body radiation therapy (SBRT) in patients with hepatocellular carcinoma (HCC) in a multicenter randomized trial. Methods and Materials: Patients were included if they were eligible for TACE. They could also be recruited if they required treatment prior to liver transplantation. A maximum of four TACE-DEB procedures and ablation after incomplete TACE-DEB were both allowed. SBRT was delivered in six fractions of 8-9Gy. Primary end point was time to progression (TTP). Secondary endpoints were local control (LC), overall survival (OS), response rate (RR), toxicity, and quality of life (QoL). The calculated sample size was 100 patients. Results: Between May 2015 and April 2020, 30 patients were randomized to the study. Due to slow accrual the trial was closed prematurely. Two patients in the SBRT arm were considered ineligible leaving 16 patients in the TACE-DEB arm and 12 in the SBRT arm. Median follow-up was 28.1 months. Median TTP was 12 months for TACEDEB and 19 months for SBRT (p=0.15). Median LC was 12 months for TACE-DEB and >40 months (not reached) for SBRT (p=0.075). Median OS was 36.8 months for TACEDEB and 44.1 months for SBRT (p=0.36). A post-hoc analysis showed 100% for SBRT 1- and 2-year LC, and 54.4% and 43.6% for TACE-DEB (p=0.019). Both treatments resulted in RR>80%. Three episodes of possibly related toxicity grade ≥3 were observed after TACE-DEB. No episodes were observed after SBRT. QoL remained stable after both treatment arms. Conclusions: In this trial, TTP after TACE-DEB was not significantly improved by SBRT, while SBRT showed higher local antitumoral activity than TACE-DEB, without detrimental effects on OS, toxicity and QoL. To overcome poor accrual in randomized trials that include SBRT, and to generate evidence for including SBRT in treatment guidelines, international cooperation is needed

    Factors impacting survival after transarterial radioembolization in patients with hepatocellular carcinoma: results from the prospective CIRT study

    No full text
    Transarterial radioembolization (TARE) with Yttrium-90 resin microspheres is an established treatment option for patients with hepatocellular carcinoma (HCC). However, optimising treatment application and patient selection remains challenging. We report here on the effectiveness, safety and prognostic factors, including dosing methods, associated with TARE for HCC in the prospective observational CIRT study. We analysed 422 patients with HCC enrolled between Jan 2015 and Dec 2017, with follow-up visits every 3 months for up to 24 months after first TARE. Patient characteristics and treatment-related data were collected at baseline; adverse events and time-to-event data (overall survival [OS], progression-free survival [PFS] and hepatic PFS) were collected at every 3-month follow-up visit. We used the multivariable Cox proportional hazard model and propensity score matching to identify independent prognostic factors for effectiveness outcomes. The median OS was 16.5 months, the median PFS was 6.1 months, and the median hepatic PFS was 6.7 months. Partition model dosimetry resulted in improved OS compared to body surface area calculations on multivariable analysis (hazard ratio 0.65; 95% CI 0.46-0.92; p = 0.0144), which was confirmed in the exact matching propensity score analysis (hazard ratio 0.56; 95% CI 0.35-0.89; p = 0.0136). Other independent prognostic factors for OS were ECOG-performance status >0 (p = 0.0018), presence of ascites (p = 0.0152), right-sided tumours (p = 0.0002), the presence of portal vein thrombosis (p = 0.0378) and main portal vein thrombosis (p = 0.0028), ALBI grade 2 (p = 0.0043) and 3 (p = 0.0014). Adverse events were recorded in 36.7% of patients, with 9.7% of patients experiencing grade 3 or higher adverse events. This large prospective observational dataset shows that TARE is an effective and safe treatment in patients with HCC. Using partition model dosimetry was associated with a significant improvement in survival outcomes. Transarterial radioembolization (TARE) is a form of localised radiation therapy and is a potential treatment option for primary liver cancer. We observed how TARE was used in real-life clinical practice in various European countries and if any factors predict how well the treatment performs. We found that when a more complex but personalised method to calculate the applied radiation activity was used, the patient responded better than when a more generic method was used. Furthermore, we identified that general patient health, ascites and liver function can predict outcomes after TARE. NCT02305459
    corecore