204 research outputs found

    Thermalisation by a boson bath in a pure state

    Full text link
    We consider a quantum system weakly coupled to a large heat bath of harmonic oscillators. It is well known that such a boson bath initially at thermal equilibrium thermalises the system. We show that assuming a priori an equilibrium state is not necessary to obtain the thermalisation of the system. We determine the complete Schr\"odinger time evolution of the subsystem of interest for an initial pure product state of the composite system consisting of the considered system and the bath. We find that the system relaxes into canonical equilibrium for almost all initial pure bath states of macroscopically well-defined energy. The temperature of the system asymptotic thermal state is determined by the energy of the initial bath state as the corresponding microcanonical temperature. Moreover, the time evolution of the system is identical to the one obtained assuming that the boson bath is initially at thermal equilibrium with this temperature. A significant part of our approach is applicable to other baths and we identify the bath features which are requisite for the thermalisation studied

    A super-Ohmic energy absorption in driven quantum chaotic systems

    Full text link
    We consider energy absorption by driven chaotic systems of the symplectic symmetry class. According to our analytical perturbative calculation, at the initial stage of evolution the energy growth with time can be faster than linear. This appears to be an analog of weak anti-localization in disordered systems with spin-orbit interaction. Our analytical result is also confirmed by numerical calculations for the symplectic quantum kicked rotor.Comment: 4 pages, 2 figure

    Numerical Study of Hydrodynamic Process in Chaohu Lake

    Get PDF
    In this paper, the hydrodynamic characteristics of water flow in Chaohu Lake are studied by using the finite volume coastal ocean model (FVCOM), which is verified by the observed data. The typical flow field and the 3-D flow structure are obtained for the lake. The flow fields under extreme conditions are analyzed to provide a prospective knowledge of the water exchange and the transport process.The influence of the wind on the flow is determined by the cross spectrum method. The results show that the wind-driven flow dominates most area of the lake. Under prevailing winds in summer and winter, the water flows towards the downwind side at the upper layer while towards the upwind side at the lower layer in most area except that around the Chaohu Sluice. The extreme wind speed is not favorable for the water exchange while the sluice's releasing water accelerates the process. The water velocity in the lake is closely related with the wind speed

    Baseline-free damage identification of metallic sandwich panels with truss core based on vibration characteristics

    Get PDF
    A baseline-free damage identification method is proposed to identify damages in metallic sandwich panels with truss core in the article. The method is based on flexibility matrix and gapped smoothing method, with damage index defined DIm. The weight coefficient m is introduced to consider the effect of damages on both low-order modes and high-order modes. Numerical simulations and experiments are conducted to evaluate the present method. Besides, damage index DIm* is also defined by processing DIm with Teager energy operator, and comparisons between DIm and DIm* are also carried out. Results show that the proposed method is effective in detecting single damage and multiple damages of the same or different extent. The weight coefficient m plays a very important role in identification of multiple damages of different styles. When comparing with DIm*, it is found that the present index DIm is better at suppressing the singularity caused by contact nodes and detecting of multiple damages which contain small or slight damages.</p

    Physical modeling of local scour development around a large-diameter monopile in combined waves and current

    Get PDF
    In most of the previous studies on local scour around pile foundations, wave-induced pore pressure response has not been taken into account. The local-scour and pore-pressure responses around a large-diameter monopile in combined waves and current have been physically modeled with a specially-designed flow-structure-soil interaction flume. In the series of experiments, the time developments of the scour-depth and the pore-pressure in the proximity of the model pile were measured simultaneously. Experimental results indicate that the wave-induced upward seepage under the wave troughs may weaken the buoyant unit weight of the surrounding sand, which brings the sand-bed more susceptible to scouring. The superimposition of the waves on a current has much effect on the time-development of local scour and the resulting equilibrium scour-depth, which is particularly obvious when the sand-bed is in the clear-water regime under the current or waves alone respectively. It is observed that the maximum flow velocity at the boundary layer for the following-current case is larger than that for the opposing-current case, which further results in faster time development of scour depth and greater equilibrium scour depth for the following-current case

    Self-focusing dynamics of patches of ripples

    Get PDF
    The dynamics of focussing of extended patches of nonlinear capillary gravity waves within the primitive fluid dynamic equations is presented. It is found that, when the envelope has certain properties, the patch focusses initially in accordance to predictions from nonlinear Schrodinger equation, and focussing can concentrate energy to the vicinity of a point or a curve on the fluid surface. After initial focussing, other effects dominate and the patch breaks up into a complex set of localised structures lumps and breathers - plus dispersive radiation. We perform simulations both in the inviscid regime and for small viscosities. Lastly we discuss throughout the similarities and differences between the dynamics of ripple patches and self-focussing light beams. (C) 2016 The Authors. Published by Elsevier B.V

    On asymmetric generalized solitary gravity-capillary waves in finite depth

    Get PDF
    Generalized solitary waves propagating at the surface of a fluid of finite depth are considered. The fluid is assumed to be inviscid and incompressible and the flow to be irrotational. Both the effects of gravity and surface tension are included. It is shown that in addition to the classical symmetric waves, there are new asymmetric solutions. These new branches of solutions bifurcate from the branches of symmetric waves. The detailed bifurcation diagrams as well as typical wave profiles are presented

    PARAMETRIZATION OF HIGH-SPEED TRAIN STREAMLINE SHAPE

    Get PDF
    In the past decade, the high speed trains (HSTs) in China have experienced a booming development, with the design of CRH380A as a predominant example. A series of brand new HSTs have been developed with high aerodynamic performance, which includes the running resistance, the lift of the trailing car, pressure waves when trains pass by each other, aerodynamic noise in the far field, etc. In order to design HSTs with better aerodynamic performance, it is necessary to perform aerodynamic shape optimization, especially to optimize the streamline shape of HSTs. Parametrization is the basis for the whole optimization process, since good parametrization approach not only affects the optimization strategy, but also determines the design space and optimization efficiency. In the present paper, a series of work related to the streamline shape parametrization performed by the author in recent years have been introduced. Four different parametrization approaches have been exhibited, which are Local Shape Function method (LSF) and Free-Foam Deformation method (FFD), Modified Vehicle Modeling Function method (MVMF), Class function/Shape function Transformation method (CST). These methods could be categorized into two kinds: shape disturbance approach (LSF and FFD) and shape description approach (MVMF and CST). Among these four methods, some are developed by the authors while some are locally modified so as to meet the parametrization of the streamline shape. The detailed process of these four approaches are exhibited in the present paper and the characteristics of these four approaches are compared.</p

    Investigation of symmetry breaking in periodic gravity-capillary waves

    Get PDF
    In this paper, fully nonlinear non-symmetric periodic gravity capillary waves propagating at the surface of an inviscid and incompressible fluid are investigated. This problem was pioneered analytically by 7ufiria (J. Fluid Mech., vol. 184, 1987c, pp. 183-206) and numerically by Shimizu &amp; Shoji (Japan J. Ind, Appl. Maths, vol. 29 (2), 2012, pp. 331-353). We use a numerical method based on conformal mapping and series truncation to search for new solutions other than those shown in Zufiria (1987c) and Shimizu &amp; Shoji (2012). It is found that, in the case of infinite-depth, non-symmetric waves with two to seven peaks within one wavelength exist and they all appear via symmetry-breaking bifurcations. Fully exploring these waves by changing the parameters yields the discovery of new types of non-symmetric solutions which form isolated branches without symmetry-breaking points. The existence of non-symmetric waves in water of finite depth is also confirmed, by using the value of the streamfunction at the bottom as the continuation parameter
    corecore