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ABSTRACT 
In the past decade, the high speed trains (HSTs) in China 

have experienced a booming development, with the design of 
CRH380A as a predominant example. A series of brand new 
HSTs have been developed with high aerodynamic 
performance, which includes the running resistance, the lift of 
the trailing car, pressure waves when trains pass by each other, 
aerodynamic noise in the far field, etc. In order to design HSTs 
with better aerodynamic performance, it is necessary to perform 
aerodynamic shape optimization, especially to optimize the 
streamline shape of HSTs. Parametrization is the basis for the 
whole optimization process, since good parametrization 
approach not only affects the optimization strategy, but also 
determines the design space and optimization efficiency. In the 
present paper, a series of work related to the streamline shape 
parametrization performed by the author in recent years have 
been introduced. Four different parametrization approaches 
have been exhibited, which are Local Shape Function method 
(LSF) and Free-Foam Deformation method (FFD), Modified 
Vehicle Modeling Function method (MVMF), Class 
function/Shape function Transformation method (CST). These 
methods could be categorized into two kinds: shape disturbance 
approach (LSF and FFD) and shape description approach 
(MVMF and CST). Among these four methods, some are 
developed by the authors while some are locally modified so as 
to meet the parametrization of the streamline shape. The 
detailed process of these four approaches are exhibited in the 
present paper and the characteristics of these four approaches 
are compared. 

 
1 INTRODUCTION 
  

In the past decade, the HSTs in China have experienced a 
booming development, with the design of CRH380A as a 
predominant example. The operation speed reaches up to 300 
km/h and the biggest experimental speed reaches to a value of 
500 km/h. With a big slenderness ratio, HSTs run close to the 
ground with a high speed. As a result, many aerodynamic issues 
which could be neglected in low running speed circumstance 
become to be dominant when the speed rises [1, 2], such as the 
aerodynamic resistance, aerodynamic lift of the trailing car, 
pressure waves, micro pressure waves and aerodynamic noise. 
Current study reveals that the aerodynamic loads of the leading 
and trailing cars have the greatest impact on the safety and 
stability of the train operation. The head shape of the high-
speed train has great influence on the aerodynamic performance 
of the train. Aerodynamic performance of HSTs could be 
greatly improved by properly designing the streamline shape [3-
6].  

The HSTs with operation speed over 300 km/h mainly 
include the Shinkansen trains from Japan, the ICE3 train from 
Germany, the TGV trains from France and the CRH380 series 
from China, which are shown in Figure 1. The streamline 
shapes vary significantly from different series. However, the 
starting point for designing a streamline shape is always to 
improve the aerodynamic performance in some aspect. 
Meanwhile, the train body processing technology and the 
cultural characteristics are also considered. The slenderness 

Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting 
FEDSM2017 

July 30-August 3, 2017, Waikoloa, Hawaii, USA 

FEDSM2017-69167

1 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 01/02/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

ratio for Shinkansen trains is comparatively larger, which is 
mainly to reduce the pressure waves and micro-pressure waves 
when trains pass the tunnel. The slenderness ratios for ICE3 and 
TGV series are comparatively smaller, which is mainly to 
reduce the aerodynamic drag and balance the processing 
requirement. As one of the representatives of the new 
generation of HSTs in China, the CRH380A train is innovated 
independently on the base of E2 series, and the aerodynamic 
performance, cultural characteristics and the processing 
technology are all considered during the design of the 
streamline shape. 

 
(a) E7           (b) ICE3 

 
(c) TGV        (d) CRH380A 

Figure 1. Different kinds of HST streamline shapes: (a) E7; (b) 
ICE3; (c) TGV; (d) CRH380A. 

 
In order to improve the design efficiency and shorten the 

design cost, aerodynamic optimization on the base of 
optimization algorithms becomes a research hotspot for the 
design of streamline shape [7, 8 and 9]. For three-dimensional 
aerodynamic optimization of streamline shape, parametrization 
is the basis of the whole study. 

Due to the big slenderness ratio, the streamline shape of 
HSTs is composed of complex free-form surfaces. During the 
optimization process, the surface deformation could be rather 
large, which would generate totally different kind of surfaces. 
As a result, it is very crucial to develop parametrization 
methods for the streamline shape of HSTs. Current frequently 
used parametrization methods for three-dimensional surfaces 
include mesh vertex method, free-form deformation method 
(FFD), spline surface method and analytical method. Mesh 
vertex method could describe arbitrary shape and is widely used 
in actual streamline shape parametrization [10-13]. However, 
non-smooth surface could be easily generated and this approach 
suffers greatly from the number of design variables and the 
gradient between adjacent vertices. FFD [14] and spline surface 
method show good performance in shape parametrization, 
which can control the large deformation area with fewer control 
points, and can ensure the smoothness of the surface. Analytical 
method is widely used for those simplified shapes [9, 15 and 
16], which get deterministic equations and could be easily 
modified by varying the coefficients of the equations. As a 
result, it is difficult to use in parameterizing practical streamline 
shape. 

Parametrization is the basis for the whole optimization 
process, since good parametrization methods cannot only fully 

describe the shape deformation, but also shorten the 
optimization period to a certain extent and improve the 
optimization efficiency. This paper focuses on the 
parametrization methods for the streamline shape of HSTs, and 
introduces four different kinds of parametrization methods 
developed by the authors. The exact process of these methods 
and their applications on HSTs are mainly focused on, and also 
their performances is compared. 

2 SHAPE DISTURBANCE METHODS 
The definition of shape disturbance method is first given 

here. These methods aim at an already-existing shape, and 
achieve new shape by the superposition of the original shape 
and increment, which is generated by the disturbance of 
different design variables along the original surface. Shape 
disturbance method usually benefits from high deformation 
efficiency and stronger applicability. In this section, two 
parametrization methods are introduced, which are Local Shape 
Function method and Free-Form Deformation method. 

 
2.1 LOCAL SHAPE FUNCTION METHOD 

LSF method was first proposed by the authors [17], and the 
whole processes are as follows: 

(1) For a given geometry, deformation regions should be 
divided firstly. 

(2) Mesh the deformation regions, and obtain the 
coordinate values of every grid point. In order to keep the 
smooth transition of the surface, the structural grids have been 
utilized for mesh discretization, just as Figure 2 shows. 

(3) Choose the deformation function of each region, which 
can be selected randomly, but smooth transition between 
adjacent regions should be ensured. 

(4) Choose a weight factor iw  for each deformation 
function, which determines the maximum deformation value of 
each region. 

(5) Calculate the increments   of coordinates of all grid 
points by the deformation functions and iw . 

(6) Get the coordinates of the deformed shape by summing 
  and the coordinates of the original shape. 

(7) According to the coordinates of the deformed shape, the 
deformed surface can be fitted exactly, then a deformation 
process is done. 

In the above process, step (3) is the most crucial step. A 
control point is assigned on each deformation region, which 
could be used to deform the surfaces by the movement of 
control points. The deformation surfaces are different from each 
other due to the different choices of deformation functions. 
Inappropriate deformation functions will easily lead to irrational 
deformation surfaces. Trigonometric functions, exponential 
functions, logarithmic functions, polynomial functions and Non-
Uniform Rational B-Splines (NURBS) functions are all 
commonly used deformation functions. 
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Figure 2. Schematic of surface deformation by LSF. 

 
Here we give an example for LSF parametrization. It is 

mainly from the study from authors in reference [17]. Due to 
the symmetrical design along the longitude of the train, only 
one side of the symmetrical plane of the streamline is 
parameterized. As a result, the design parameters can be 
reduced by half. The parametric surfaces are separated into 
seven deformation regions, as shown in Figure 3(a). The nose 
drainage regions locate both sides of the streamline, originate 
from the nose tip and stretch backward to the end of the 
streamline. As shown in Figure 3(a), nose drainage is controlled 
by regions 3 and 6, and a control point Point1 is set here, 
extracting its y coordinate as the first design parameter 1w . The 
height of the nose tip is a crucial variable to aerodynamic 
performance of the train, so here we take it as a design variable 
for surface parametrization and call it nose height. As shown in 
Figure 3(a), the nose tip is completely controlled by regions 1 
and 3, and another control point Point2 is set here, extracting its 
z coordinate as the second design parameter 2w . The width of 
the streamline is namely the deformation of the streamline in y 
direction, as shown in Figure 3(a), which is controlled by 
regions 4−7, and a control point Point3 is set here, extracting its 
y coordinate as the third design parameter 3w .The slope of the 
cab window could be changed by surface deformation of region 
5. However, in order to keep the deformed surface smooth, 
region 6 should be better included and deformed together with 
region 5. Consequently, the slope of the cab window will be 
controlled by regions 5 and 6, and the fourth control point 
Point4 is set here, extracting its z coordinate as the fourth 
design parameter 4w . The shape of the cowcatcher is controlled 
by zone 2, and the fifth control point Point5 is set here, 
extracting its x coordinate as the fifth design parameter. For 
simplicity, all the deformation functions in this paper are 
trigonometric functions. Figure 3(b) shows the deformation of 
the nose and the cowcatcher. With use of the LSF method, 
surface deformation could be achieved by limited design 
variables. Meanwhile, transition between adjacent regions could 
be kept smooth during surface deformation, indicating that the 
LSF method could directly deform the concerned surface and 
keep highly efficient. 

 
(a)           

 

 
(b) 

Figure 3. Deformation regions and local deformations: (a) 
Schematic of deformation regions; (b) deformation of the nose 

and cowcatcher 
 
2.2 FREE-FORM DEFORMATION METHOD 

FFD method was firstly proposed by Sederberg and Parry 
in 1986 [18]. It could be used for parametrization of two-
dimensional and three-dimensional shapes. It could still use 
simple operations to achieve deformations even for complex 
shapes. It is inspired by the physical phenomenon that the 
elastic body is deformed by external force. A control volume is 
built around the research object. Once the control volume is 
exerted an external force, all the shapes inside the volume 
would be deformed correspondingly, as well as the research 
object. The local coordinates of the research object will not 
change during the deformation. Consequently, a mapping 
relationship for the object before and after deformation could be 
established by the local coordinates. FFD method could be 
easily applied for parametrization of the shape entirely or 
locally. 

Due to strong applicability of the FFD method, it is very 
suitable for parametrization of streamline shape of HSTs. 
Currently some commercial software such as SCULPTOR 
perform shape deformation on the base of this method. The 
FFD code was also developed in-house by the authors, aiming 
at parameterizing the practical streamline shape of HSTs. 

A specific streamline shape is taken as an example. Due to 
symmetry, only half of the streamline shape is taken into 
consideration. As shown in Figure 4, the direction of length, 
width and height of the control volume are correspond to the x, 
y, z direction of the coordinate system. Eighteen control points 
are set along the x direction, while six points along y direction 
and five points along z direction. The total number of control 
points are 540. 
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Figure 4. The FFD control volume and control points around 

the streamline shape 
 
Although the number of control points is rather huge, the 

design variables should be chosen only for those with obvious 
physical significance and great influence on aerodynamic 
performance. According to the optimization design experience, 
the following control points are selected as design variables, as 
shown in Table 1. 

Table 1. Design variables of the FFD method 
Number Control Points Design 

variables Physical Meaning 

1 (0，0，1) x Nose Length 
2 (0，0，1) z Nose Height 
3 (1，0，0) x Bottom Length of the 

Cowcatcher 4 (1，1，0) x 

5 (3，3，1) z Entrance Height of the 
Drainage 6 (3，3，2) z 

7 (3，4，0) y 

Bottom Width 8 (4，4，0) y 

9 (5，4，0) y 

10 (5，0，3) z Height of the Driving 
cab 11 (6，0，3) z 

12 (6，3，2) z Exit Height of the 
Drainage 13 (9，4，2) z 

14 (13，4，1) y 
Width of the Train Body 

15 (13，4，2) y 

16 (14，0，5) z Height of the Train Body 

 
The design variables are mainly concerned about the nose, 

the cowcatcher, the drainage, the driving cab and the connection 
part between the streamline and the train body. The number of 
design variables is 16, and it could be increased or decreased 
according to practical demands. 

In order to validate the FFD method for streamline shape of 
HSTs, deformations on nose length, nose height and the height 
of the driving cab are performed. The shape comparisons before 
and after deformation are shown in Figure 5. It could be seen 
that FFD method could be efficiently used for deformation of 
the streamline shape and smooth deformation surfaces could be 
obtained. 

 
(a)                        (b) 

 
(c) 

Figure 5. Shape comparison before and after deformation: (a) 
Nose Length; (b) Nose Height; (c) Height of the driving cab. 

 
2.3 METHODS COMPARISON AND ASSESSMENT 

The number of design variables for LSF method could be 
easily controlled by placing design variables on focused regions 
and smooth deformation could be ensured. LSF method owns 
the advantages of simple algorithm and strong popularization, 
and could be easily used to engineering problems. Compared to 
LSF method, FFD method is more applicable to parametrization 
of complex geometries, and only a proper control volume is 
needed together with control points with proper distribution. 
However, with the increase of control points, the number of 
design variables also increase, resulting in massive 
computational cost for aerodynamic shape optimization. 

3 SHAPE DESCRIPTION METHODS 
The same as section 2, the definition of shape description 

method is also given first. Based on systematically analysis on 
the shape of the object, key profiles or surface characteristics 
will be extracted. Considering the HST streamline, the profile 
of the longitudinal section is a key profile for the streamline. 
The maximum cross-sectional profile is another key profile as 
well. Once these profiles are determined, the basic shape of the 
streamline could be interpolated. These profiles could be 
categorized and described by certain curve equations, which 
have already been widely used in aeronautics and astronautics. 
For shape description methods, shape deformation could be 
achieved by varying the coefficients of the equations. Once the 
coefficients are changed, the streamline shape would be 
changed automatically for surface equation driven methods. For 
profile equations driven methods, the key profiles could also be 
altered, resulting in new deformed shape by spatial 
interpolation. 

 
3.1 MODIFIED VEHICLE MODELING FUNCTION METHOD 

The MVMF method is a profile equation driven method. As 
a result, key profiles along the streamline shape should firstly be 
analyzed. Figure 6 shows the key control profiles for the 
streamline shape, in which the longitudinal profile is controlled 
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by L1, the longitudinal profile of the cowcatcher is controlled 
by L2, the horizontal profile and bottom profile are controlled 
by L3 and L4, and the maximum cross-sectional profile is 
controlled by L5. In general, the maximum cross-section is 
determined so as to match the existing train bodies. As a result, 
L5 will not be optimized and is given according to the 
maximum cross-section of CRH380A high speed trains. The 
profiles of L3 and L4 are similar and could be described with 
the same formula. L1 and L2 have the most influence on the 
nose shape. Totally different noses can be obtained via varying 
L1 and L2, especially the latter, which affects not only the 
aesthetic effect, but also the aerodynamic performance. 

 
Figure 6. Key control profiles of the streamline shape 

 
The Vehicle Modeling Function parametric method is 

derived by J.H. Rho etc. [19] through further improvement on 
Bernstein polynomial. This method can greatly reduce the 
design variables and better describe the profiles with little 
curvature in the shape design of automobiles. Yo-Cheon Ku etc. 
[20] introduced VMF method into the streamline shape design 
of HSTs and extracted four design variables to control the shape 
deformation. Although it is difficult to take the maximum cross-
section and the volume of the nose into consideration through 
these variables and can hardly obtain any streamline shape that 
could be applied into actual application, it sheds light on the 
way to optimize the streamline shape of HSTs.  

In reference [19], the basic form of two-dimensional 
profiles given by J.H. Rho is taken as: 

 

           1 2

             

1 2

  (1)1 1

A A

x x x x x x

F S Y Y

c c c c c c

      

 
In which x ranges from 0 to c . 

1Y and
2Y are the vertical 

coordinates of the starting point and ending point, respectively. 
Different kinds of profiles can be obtained by changing the 
form of  /S x c . 

1
A and

2
A are the curvatures of the front 

and rear part of the profile. When
1

A ranges from 0 to 1 and
2

A is 

greater than 1, the curvature at x=0 for  /F x c tends to 

infinity, and at x=c for  /F x c equals to 0; When
2

A ranges 

from 0 to 1, the curvature at x=c for  /F x c tends to infinity. 
Consequently, in order to avoid the infinite curvature at end 
points, cubic polynomial is adopted at the endpoints. The 
coefficients of the polynomial are determined by the 
coordinates and curvatures at the endpoints. When the curvature 
of the endpoints is finite values, in order to control the 

curvatures, proper revision is performed for above formula and 
takes the form as: 

1 2

1           (2)
A A

x x x x x
F S G

c c c c c
  

         
         
         

 

 /G x c is used to control the change of curvatures at 
endpoints and typically takes the form of a polynomial, of 
which the coefficients are determined by the curvatures and 
coordinates at the end points. 

Taking L1 as an example, the profile of L1 takes the form 
as: 

11 11 11
1

12 11 12 11 12 11

11 12 1

( ) 1 1 ( )

                                                                                    (3)

k

bA A a
x x x x x x

z x a g x
x x x x x x

       
        

       

 

In which, 

   
2

11 11
12 11 12 11

12 11 12 11

(4)

( ) 2

                                                                      

x x x x
g x z z z z

x x x x

  
     

  

 

It is used to control the heights and curvatures at 
endpoints. 

11
x and 

12
x  are the x-coordinates of the start point 

and end point. 
11

z and 
12

z are the z-coordinates of the start 
point and end point. 

After obtaining the equations of key profiles, spatial 
interpolation will be performed between key profiles to obtain a 
basic streamline shape, and Laplacian smoothing method could 
be used for non-smooth regions. In order to better approximate 
the practical streamline, the superposition of the cab window 
and the lateral drainages will be conducted. Consequently, the 
final streamline shape will be obtained. Figure 7 shows the flow 
chart of MVMF for parametrization of the streamline shape of 
HSTs. 

 
Figure 7. Flow chart of MVMF for parametrization of the 

streamline shape of HSTs 
 
Figure 8 shows different streamline shapes of HSTs. It can 

be seen that totally different streamlines can be obtained by 
adjusting the design variables. The basic outline of the 
streamline shape could be sketched by three profiles. The 
profile of the cowcatcher zone greatly enriches the streamline 
shape that could be further adjusted by the shape of the cab 
window and the drainage. 
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Figure 8. Different streamlines of HSTs 
 

3.2 CLASS FUNCTION/SHAPE FUNCTION 
TRANSFORMATION METHOD 

CST method was firstly proposed by Kulfan and Bussoletti 
in 2006 [21]. A class function and a shape function are utilized 
to represent the profile of airfoils. This method is widely used in 
parametrization of aeronautics and astronautics vehicles, and 
seldom references could be referred to for its application to the 
parametrization of streamline shape of HSTs. Based on the 
characteristics of the streamline shape, the authors developed 
the codes of CST method in-house, and determined some key 
values of coefficients in class function and shape function to be 
properly used for streamline shapes. In order to approximate 
closely to the practical geometry, the optimal CST method has 
been developed based on optimization algorithms. 

For three-dimensional CST parametrization, based on 
Bernstein polynomials, the cross-sectional expression could be 
determined, taking the form as: 

       1
2

0
        (5)

n
N i

N i n N

i

C b B     


   

Where / wy L  , which is the normalized length in the 
cross section. 

wL  is the length of the cross-sectional profile.  

    is the height of the profile at the position  . 

 1
2

N

NC  is the class function, where N1 and N2 are the 

coefficients which define the basic profile type.  
0

n
i

i n

i

b B 


  is 

the shape function, which could make local or overall 
adjustment on the base of the basic profile by varying the 
coefficient ib  until the final profile is obtained. 

, 0,1, , ,ib i n are the weighting factors of Bernstein 

polynomials.  i

nB  is the i-th basis function of N-th order 

Bernstein polynomials.  N  is the offset at the position 
 . 

The three-dimensional surface could be considered as the 
combination of a series of cross-sections along the axial 
direction. Different locations in axial direction could be 
described by the shape function. As a result, the expression of 
the whole surface could be obtained. Similarly, we define 

ib ： 

     1
2                        (6)M

i M Mb C S       

   
0

                                 (7)
m

j

j k

j

S b N 


  
Where /x L  is the normalized axial coordinate and 

is the axial length of the geometry. Taking 
ib  into the 

definition of ( )  : 

           1 1
2 2 , ,

0 0

, ,

                                                                                  (8)

n m
N M i j

N M i j k k M N

i j

C C b N N         
 

  

    Meanwhile, the boundary profile for the projection plane 
of   and   should be parameterized. That is,  

     1
2

0
                                      (9)

w
T it

T t k

i

Z C b N  


           

              
The above formulas define an analytical description for a 

three-dimensional surface.   
Considering that the downward part and backward part of 

the streamline shape are completely open, the coefficient M2 
and T2 should be 0. Besides, the streamline shape is 
symmetrical bilaterally, which requires that N1 and N2 should 
be equal to each other and the weight coefficient matrix should 
be symmetrical too. Meanwhile, in order to further reduce the 
number of design variables, the orders of shape functions in 
three dimensions are all 3. 

After simplification, the number of design variables for 
CST parametrization of a streamline shape is 15, which includes 
three coefficients for class functions, four independent weight 
coefficients in shape functions and eight independent 
coefficients in weight coefficient matrix. All the design 
variables are listed in Table 2. 

Table 2. Design variables in 3d-CST parametrization for a 
streamline shape 

coefficients for class 
functions N1， M1， T1 

weight coefficients in shape 
functions 

tb  bt(0)， bt(1)， bt(2)， bt(3) 

coefficients in weight 
coefficient matrix 

wb  
bw(0，0)， bw(0，1)， bw(0，2)， bw(0，3) 
bw(1，0)， bw(1，1)， bw(1，2)， bw(1，3) 

 
Different streamline shapes could be obtained by justifying 

the values of design variables. Figure 9 show the different 
streamline shapes. 

 

 
Figure 9. Different streamline shapes by CST parametrization 

 
It could be seen that the streamline shape could be given 

randomly by the 15 design variables. However, sometimes we 
want to obtain an initial shape of a practical streamline shape 
and perform aerodynamic optimization from the practical shape, 
which requires that the CST method could approximate close to 
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the practical shape. As a result, the optimal CST method is 
developed on the base of optimization algorithms. The exact 
process could be described as follows: Firstly, structural grids 
should be generated along the surface of practical streamline 
shape and make sure the grid distribution in x and y direction to 
be equal-distant for adjacent grids. Secondly, calculating the 
difference between Z(η,ψ) and the practical value. Thirdly, loop 
through all η and ψ, and summarize all the differences. In the 
end, minimize the summation of all differences by optimization 
algorithms and get the optimal values of design variables. 

 
Figure 10. Comparison of an optimized CST shape and the 

practical shape 
 
Figure 10 shows the comparison of an optimized CST 

shape and the practical shape. It can be seen that most places 
are close to each other for the optimized CST shape and the 
practical one, although slighter big difference could be found 
locally. 

 
3.3 METHODS COMPARISON AND ASSESSMENT 

MVMF method is a parametrization approach driven by 
equations of key profiles, and could be precisely describe the 
three-dimensional streamline shape by use of spatial 
interpolation technique. This method could be used for 
conceptual design of streamline shape and the aerodynamic 
optimization of a practical streamline as well. The design 
efficiency of the streamline shape could be greatly improved by 
this method. However, the design variables get poor physical 
significance, since all design variables are defined by the 
coefficients of key profiles.  

Compared to MVMF method, CST method is driven by 
equations of key surfaces. This method owns strong integrity, 
since no spatial interpolation is needed. Consequently, the 
smoothness of the CST surface is better than MVMF surface. 
Meanwhile, CST method suffers the same with MVMF method 
in less physical significance of design variables. 

4 CONCLUSIONS 
In the present paper, the authors systematically introduce a 

series of work on parametrization of streamline shape of HSTs. 

Four parametrization methods are presented, which are LSF 
method, FFD method, MVMF method and CST method. The 
algorithms and whole processes are all introduced, too. By 
method innovation and extension, these four methods are all 
successfully applied into streamline shape parametrization. 
Comparison study shows that LSF and FFD both benefit from 
simple algorithms and strong generality. The design variables 
for LSF and FFD own very intuitive physical meanings. 
However, the number of design variables for LSF could be 
easily controlled while difficult for FFD when the complexity of 
geometry increases. MVMF and CST are both suitable for 
conceptual design of streamline shape and for the aerodynamic 
optimization of a practical streamline. The design variables for 
both methods come from the coefficients of key profile 
equations or surface equations. As a result, they both suffer 
from the lack of physical significance. Generally speaking, the 
authors’ work provides abundant choices for parametrization of 
streamline shape of HSTs. The parametrization method could be 
chosen automatically according to specific physical 
background. 
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