117 research outputs found

    ICD implantation in left ventricular noncompaction: A case report and review of the literature

    Get PDF
    Left ventricular noncompaction (LVNC) is an uncommon cardiomyopathy characterized by the persistence of fetal myocardium with a pattern of prominent trabecular meshwork and deep intertrabecular recesses, systolic dysfunction and left ventricular dilatation. It is thought to be caused by the arrest of normal endomyocardial morphogenesis. There is no consensus on the definition, diagnostic criteria, pathogenesis or treatment of LVNC. We report the case of a 43 year-old patient with LVNC, nonsustained ventricular tachycardia and family history of sudden cardiac death (SCD). An implantable cardioverter-defibrillator (ICD) was prophylactically implanted because of the individual’s high SCD risk. Although ICD is an effective option for preventing SCD, data on the long-term follow-up of patients with LVNC is limited. (Cardiol J 2011; 18, 6: 691–694

    Advanced oxidation protein products and malondialdehyde — the new biological markers of oxidative stress — are elevated in postmenopausal women

    Get PDF
    Objectives: The aim of the study was to measure advanced oxidation protein products (AOPPs) as markers for oxidative stress to evaluate cardiovascular risk in pre- and postmenopausal women and to compare the results with malondialde­hyde (MDA) levels. Material and methods: Twenty premenopausal women and 84 naturally postmenopausal patients were enrolled in the study. AOPP and MDA plasma levels were measured. The postmenopausal group was further subdivided into two groups: postmenopausal age of 40–49 and of 50–59 years. AOPP and MDA levels were compared between premenopausal, 40–49 and 50–59 year old menopausal women. Results: Plasma AOPP and MDA levels in postmenopausal women were increased when compared with their premeno­pausal peers (123.83 ± 55.51 μmol/L vs. 61.59 ± 16.42 μmol/L and 6.50 ± 1.05 μmol/L vs. 5.98 ± 0.77 μmol/L; respectively). Mean plasma AOPP levels in the two menopausal age groups were both significantly higher from the premenopausal group (118.64 ± 59.1 μmol/L vs. 61.59 ± 16.42 μmol/L and 132.31 ± 48.97 μmol/L vs. 61.59 ± 16.42 μmol/L; respectively). No significant difference was found in mean AOPP levels between postmenopausal subjects of 40–49 and 50–59 years age (118.64 ± 59.12 μmol/L vs. 132.31 ± 48.97 μmol/L). Mean plasma MDA levels of each of two postmenopausal age groups were both significantly higher from the premenopausal group (6.50 ± 1.04 μmol/L vs. 5.98 ± 0.77 μmol/L and 6.50 ± 1.10 μmol/L vs. 5.98 ± 0.77 μmol/L; respectively). However, no statistically significant difference between the two postmenopausal age groups (6.50 ± 1.04 μmol/L vs. 6.50 ± 1.10 μmol/L) was found. Conclusions: AOPP and MDA levels are elevated in postmenopausal women as compared to their premenopausal peers, suggesting they can be used as markers for cardiovascular risk in postmenopausal women

    Distribution and sources of particulate organic matter from the anthropogenically disturbed Iyidere River to the Black Sea coast

    Get PDF
    Understanding the biogeochemical processes of particulate organic matter occurring in the river under anthropogenic disturbances and its transport to the coastal system is important for environmental resource management. In this study, we investigated the sources and distribution of particulate organic matter (POM) from the upper reaches of the Iyidere River, Türkiye, to the coastal water of the Black Sea during the fall and spring seasons using the elemental (POC and PON (%), C/N), isotopic (δ13C and δ15N), and Bayesian mixing model (MixSIAR) analysis. The POC (%), PON (%), and C/N of POM varied seasonally, indicating that the composition of POM varied with river hydrology, which varies depending on the climate of the region. Both the mixing model and the isotopic and elemental ratios of POM have revealed that the organic matter sources contributing to the riverine of POM, during the fall season, when the precipitation is severe, exhibited a uniform distribution. Heavy rain increased soil erosion along the high-slope land, and as a result, soil and bacteria were identified as the main contributor of POM along the Iyidere River. The results showed that the organic matter sources contributing to POM in the spring season showed significant spatial variation. Terrestrial vegetation, soil OM, and bacteria were the main contributors of POM depending on sites, and these contributions did not show a regular trend along the river. δ15N of POM had significant spatial variation in both seasons that was likely caused by nitrogen inputs derived from anthropogenic activities along the river. The anthropogenic activities and cascade dams causing variations in the contribution of organic matter to the POM are the likely important driving factors in this river-coastal system

    Are treatment guides and rational drug use policies adequately exploited in combating respiratory system diseases?

    Get PDF
    SummaryThe aim of the present study was to increase awareness regarding the rational use of medicines. The data were obtained via the Material Resources Management System Module of the Ministry of Health. For the appropriateness of treatments, the Global Initiative for Asthma, the Global Initiative for Chronic Obstructive Lung Disease, and the guidelines for the rational use of medicines were used. We also investigated whether any de-escalation method or physical exercise was performed. Statistical analyses were performed using descriptive statistics to determine the mean, standard deviation, and frequency. The results showed that healthcare providers ignored potential drug reactions or adverse interactions, and reflecting the lack of adherence to the current treatment guides, 35.8% irrational use of medicines was recorded. Thus, de-escalation methods should be used to decrease costs or narrow the antibiotic spectrum, antibiotic selection should consider the resistance patterns, culturing methods should be analyzed, and monotherapy should be preferred over combination treatments

    Güçlendirilmiş dental seramiklerin vickers sertlikleri ve yük altında kırılma davranışları

    Get PDF
    Objective: The objectives of this study were to determine the Vicker`s hardness of reinforced dental ceramics and determine the modes of fractures under load. Methods: Four ceramic core groups (n=7/group) from leucite (Evopress,Wegold&De), low leucite (Finesse, Ceramco), glass-infiltrated (Inceram Alumina,Vita) and lithium disilicate materials (E.max press, Ivoclar) were fabricated according to each manufacturers’ instructions (thickness: 3 mm, diameter: 5 mm). Their individual veneering ceramics were vibrated, condensed in a stainless steel mold (diameter: 5 mm, height: 5 mm) and fired on the core materials. The specimens were stored in distilled water at 37°C for 24 hours prior to indentation tests and embedded in polyesther moulds. Vickers hardness values (DUH±SD) were measured (cross-head speed:7,2 gf/s, load:200 gf) and statistically analysed (ANOVA). A load of 400 N was applied on the surfaces of specimens with a diamond indentor (diameter:1 mm) at the macro hardness test machine for crack formation. The crack modes for each group were observed under the scanning electrone microscope. Results: The Vickers hardness values for low leucite veneering ceramic were significantly (P<0.05) higher (236±17), followed by the leucite (129±51), glass-infiltrated (117±38), and lithium disilicate (85±34) veneering ceramic materials in decreasing order. Mainly radial or cone cracks were observed after the application of load. Conclusion: The increase in the hardness of the material led to more crack formation and resulted in longer cracks. No crack formation extending to the core materials were observed in neither of the ceramic groups under these experimental conditions. ÖZET Amaç: Bu çalışmanın amacı güçlendirilmiş dental seramiklerin Vickers sertlik değerlerinin ve yük altındaki kırılma şekillerinin belirlenmesidir. Gereç ve Yöntem: Lösit (Evopress,Wegold&De), düşük lösit (Finesse, Ceramco), cam infiltrasyonlu aluminöz seramik (Inceram Alumina,Vita) ve lityum disilikat (E.max press, Ivoclar) bazlı dört farklı seramik alt yap_ materyali (n=7/grup) her bir üretici firmanın önerileri doğrultusunda hazırlandı (3 mm kalınlıkta; 5 mm çapta). Her bir alt yapı seramiğine özgü kaplama seramikleri; paslanmaz çelik bir metal kalıpta (5mm çap 5mm yükseklikte) vibrasyonla kondanse edildi ve alt yapı seramiklerinin üzerine pişirildi. Örnekler batırma testlerinden önce 37°C’ de 24 saat distile suda bekletildikten sonra polyester kalıplara gömüldü. Vickers sertlik değerleri (DUH±SD) ölçüldü (çene hızı:7,2 gf/s, yük:200 gf) ve veriler istatistiksel olarak analiz edildi (ANOVA). Çatlak oluşumu için örneklerin üst yüzeylerine makro sertlik test cihazında batıcı elmas uç ile (1 mm çaplı) 400 N yük uygulandı. Alınan taramalı elektron mikroskop görüntüleri ile her bir gruba ilişkin çatlak şekilleri gözlemlendi. Bulgular: Gruplar arasında ortalama Vickers sertlik değerleri düşük lösit grubu için anlamlı olarak (P<0.05) en yüksek bulunur iken (236±17), bunu lösit (129±51), cam infiltrasyonlu aluminöz seramik (117±38), ve lityum disilikat (85±34) kaplama seramik materyalleri azalan sırayla izledi. Yük uygulaması sonrasında genellikle ışınsal ya da koni şekilli çatlakların oluştuğu gözlendi. Sonuç: Seramik materyalin sertliğinin artması daha fazla ve daha uzun çatlak oluşumuna yol açtı. Bu çalışmadaki deneysel koşullar altında kaplama seramik gruplarının hiçbirinde alt yapı seramiklerine ulaşan çatlak oluşumu gözlenmedi

    Fabrication and optimization of 3D printed gelatin methacryloyl microneedle arrays based on vat photopolymerization

    Get PDF
    Microneedles (MNs) are micrometer-sized arrays that can penetrate the skin in a minimally invasive manner; these devices offer tremendous potential for the transdermal delivery of therapeutic molecules. Although there are many conventional techniques for manufacturing MNs, most of them are complicated and can only fabricate MNs with specific geometries, which restricts the ability to adjust the performance of the MNs. Herein, we present the fabrication of gelatin methacryloyl (GelMA) MN arrays using the vat photopolymerization 3D printing technique. This technique allows for the fabrication of high-resolution and smooth surface MNs with desired geometries. The existence of methacryloyl groups bonded to the GelMA was verified by 1H NMR and FTIR analysis. To examine the effects of varying needle heights (1000, 750, and 500 µm) and exposure times (30, 50, and 70 s) on GelMA MNs, the height, tip radius, and angle of the needles were measured; their morphological and mechanical properties were also characterized. It was observed that as the exposure time increased, the height of the MNs increased; moreover, sharper tips were obtained and tip angles decreased. In addition, GelMA MNs exhibited good mechanical performance with no breakage up to 0.3 mm displacement. These results indicate that 3D printed GelMA MNs have great potential for transdermal delivery of various therapeutics

    Discussion of the dizziness handicap inventory

    No full text
    corecore