8,101 research outputs found

    Increased voltage photovoltaic cell

    Get PDF
    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer

    Accretionary Tectonics of the North American Cordillera

    Get PDF
    Continental geology stands on the threshold of a change that is likely to be as fundamental as plate-tectonic theory was for marine geology. Ongoing seismic-reflection investigations into the deep crustal structure of North America are verifying that orogenic zones are underlain by low-angle faults of regional extent (Brown et al 1981). The growing body of regional field relations is likewise delineating numerous orogenic sutures that bound discrete crustal fragments. Paleomagnetic and paleobiogeographic studies are revealing major latitudinal shifts and rotations within and between suture-bounded fragments, particularly within the North American Cordillera. Such interdisciplinary studies are leading to a consensus that the Cordillera has been built by progressive tectonic addition of crustal fragments along the continent edge in Mesozoic and early Cenozoic time. Such crustal growth is referred to as accretionary tectonics. In this paper, we review some of the important concepts in accretionary tectonics, discuss the nature of the materials accreted between central Alaska and southern California in Jurassic and Cretaceous time, and consider the general relations between Cordilleran accretion and the movement of lithospheric plates. The concept of continents growing by peripheral accretion through geologic time has long been a topic of great interest. With the advent of plate tectonics a number of different mechanisms for crustal accretion have arisen, along with mechanisms for crustal attrition. Accretion mechanisms include the growth of imbricated sedimentary prisms along inner-trench walls, slicing off of submarine topographic irregularities within subducting plates, and collision of continents and volcanic arcs by ocean-basin closure. Tectonic attrition mechanisms include rifting, transform faulting, and strike-slip or underthrust removal of inner-trench wall materials coincident with or in place of accretionary prism growth. Growth of intraorogenic ocean basins by seafloor spreading is an additional important mechanism for creating accretionary materials as well as displacing crustal fragments. An important implication of plate kinematic theory is the likelihood for accretionary and attritionary mechanics to operate in series both in time and space along continental margins. Since attrition by nature leaves little material evidence of having operated, one of the major problems confronting Cordilleran geologists lies in the recognition of such attrition within the ancient record, particularly when interspersed with accretionary events. The spectrum of accretion and attrition mechanisms viewed at cm yr^-1 plate-transport rates over time scales of 100 m.y. leads one to suspect a highly mobile history for continental-margin orogens. The serial arrangement of subducting, transform, and rifting links along the modern Cordillera plate-juncture system and both serial and parallel arrangements in the western Pacific systems show the complex interplay of such mechanisms through space. Similar arrangements overprinted through time are suggested by the rock assemblages and structural patterns within the Cordillera, which presently resemble a collage of crustal fragments (Davis et al 1978). Recognition of the structural state of this collage geologic field mapping and geophysical investigations will bring about a new level of understanding in the growth of continental crust, and the reading of stratigraphic records within the fragments and future palinspastic restorations will lead to a new level of understanding in paleogeography and Earth history. The first problem to be considered is the recognition of native North American crust from exotic fragments that have been accreted to its edge

    Mercury-rare gas visible-UV laser

    Get PDF
    [No abstract

    Support interference of wind tunnel models: A selective annotated bibliography

    Get PDF
    This bibliography, with abstracts, consists of 143 citations arranged in chronological order by dates of publication. Selection of the citations was made for their relevance to the problems involved in understanding or avoiding support interference in wind tunnel testing throughout the Mach number range. An author index is included

    Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary

    Get PDF
    Vapor bubble collapse problems lacking spherical symmetry are solved here using a numerical method designed especially for these problems. Viscosity and compressibility in the liquid are neglected. The method uses finite time steps and features an iterative technique for applying the boundary conditions at infinity directly to the liquid at a finite distance from the free surface. Two specific cases of initially spherical bubbles collapsing near a plane solid wall were simulated: a bubble initially in contact with the wall, and a bubble initially half its radius from the wall at the closest point. It is shown that the bubble develops a jet directed towards the wall rather early in the collapse history. Free surface shapes and velocities are presented at various stages in the collapse. Velocities are scaled like (Δp/ρ)^1/2 where ρ is the density of the liquid and Δp is the constant difference between the ambient liquid pressure and the pressure in the cavity. For Δp/ρ = 10^6 (cm/sec)^2 ~ 1 atm./density of water the jet had a speed of about 130 m/sec in the first case and 170 m/sec in the second when it struck the opposite side of the bubble. Such jet velocities are of a magnitude which can explain cavitation damage. The jet develops so early in the bubble collapse history that compressibility effects in the liquid and the vapor are not important

    Bank Credit Cards and the Uniform Commercial Code

    Get PDF

    Transients influencing rocket engine ignition and popping Interim report

    Get PDF
    Engine design and operating parameters studied for effects on rocket engine ignition and poppin

    The RFC 75% Program

    Get PDF

    Difference Methods for Boundary Value Problems in Ordinary Differential Equations

    Get PDF
    A general theory of difference methods for problems of the form Ny ≡ y' - f(t,y) = O, a ≦ t ≦ b, g(y(a),y(b))= 0, is developed. On nonuniform nets, t_0 = a, t_j = t_(j-1) + h_j, 1 ≦ j ≦ J, t_J = b, schemes of the form N_(h)u_j = G_j(u_0,•••,u_J) = 0, 1 ≦ j ≦ J, g(u_0,u_J) = 0 are considered. For linear problems with unique solutions, it is shown that the difference scheme is stable and consistent for the boundary value problem if and only if, upon replacing the boundary conditions by an initial condition, the resulting scheme is stable and consistent for the initial value problem. For isolated solutions of the nonlinear problem, it is shown that the difference scheme has a unique solution converging to the exact solution if (i) the linearized difference equations are stable and consistent for the linearized initial value problem, (ii) the linearized difference operator is Lipschitz continuous, (iii) the nonlinear difference equations are consistent with the nonlinear differential equation. Newton’s method is shown to be valid, with quadratic convergence, for computing the numerical solution

    Southern California fisheries monitoring summary for 1993 and 1994

    Get PDF
    The southern California Monitoring and Management Units collectively gathered 803 discrete samples of 7,329 marine finfishes and invertebrates from local commercial fish markets or authorized fish transporters in 1993. Nineteen different species were sampled and biological information recorded for future summarization and use in formulating fisheries management strategies and decisions. Increased sampling efforts in 1994 resulted in 801 samples of 14,566 marine finfish and invertebrates representing 44 different species. Fisheries trends and threats to local fishing opportunities were identified. Results of Marine Recreational Fishery Statistics Survey interviews were also incorporated for a more complete overview of species targeted by both the sport and commercial industries. (26pp.
    corecore