13 research outputs found

    Dysregulated Levels of Circulating Autoantibodies against Neuronal and Nervous System Autoantigens in COVID-19 Patients

    No full text
    BACKGROUND: COVID-19 is a heterogenous disease resulting in long-term sequela in predisposed individuals. It is not uncommon that recovering patients endure non-respiratory ill-defined manifestations, including anosmia, and neurological and cognitive deficit persisting beyond recovery-a constellation of conditions that are grouped under the umbrella of long-term COVID-19 syndrome. Association between COVID-19 and autoimmune responses in predisposed individuals was shown in several studies. AIM AND METHODS: To investigate autoimmune responses against neuronal and CNS autoantigens in SARS-CoV-2-infected patients, we performed a cross-sectional study with 246 participants, including 169 COVID-19 patients and 77 controls. Levels of antibodies against the acetylcholine receptor, glutamate receptor, amyloid β peptide, alpha-synucleins, dopamine 1 receptor, dopamine 2 receptor, tau protein, GAD-65, N-methyl D-aspartate (NMDA) receptor, BDNF, cerebellar, ganglioside, myelin basic protein, myelin oligodendrocyte glycoprotein, S100-B, glial fibrillary acidic protein, and enteric nerve were measured using an Enzyme-Linked Immunosorbent Assay (ELISA). Circulating levels of autoantibodies were compared between healthy controls and COVID-19 patients and then classified by disease severity (mild [ = 74], severe [ = 65], and requiring supplemental oxygen [ = 32]). RESULTS: COVID-19 patients were found to have dysregulated autoantibody levels correlating with the disease severity, e.g., IgG to dopamine 1 receptor, NMDA receptors, brain-derived neurotrophic factor, and myelin oligodendrocyte glycoprotein. Elevated levels of IgA autoantibodies against amyloid β peptide, acetylcholine receptor, dopamine 2 receptor, myelin basic protein, and α-synuclein were detected in COVID-19 patients compared with healthy controls. Lower IgA autoantibody levels against NMDA receptors, and IgG autoantibodies against glutamic acid decarboxylase 65, amyloid β peptide, tau protein, enteric nerve, and S100-B were detected in COVID-19 patients versus healthy controls. Some of these antibodies have known clinical correlations with symptoms commonly reported in the long COVID-19 syndrome. CONCLUSIONS: Overall, our study shows a widespread dysregulation in the titer of various autoantibodies against neuronal and CNS-related autoantigens in convalescent COVID-19 patients. Further research is needed to provide insight into the association between these neuronal autoantibodies and the enigmatic neurological and psychological symptoms reported in COVID-19 patients

    Predictors of chronic COVID-19 symptoms in a community-based cohort of adults

    No full text
    BACKGROUND: COVID-19 can cause some individuals to experience chronic symptoms. Rates and predictors of chronic COVID-19 symptoms are not fully elucidated. OBJECTIVE: To examine occurrence and patterns of post-acute sequelae of SARS-CoV2 infection (PASC) symptomatology and their relationship with demographics, acute COVID-19 symptoms and anti-SARS-CoV-2 IgG antibody responses. METHODS: A multi-stage observational study was performed of adults (≥18 years) from 5 US states. Participants completed two rounds of electronic surveys (May-July 2020; April-May 2021) and underwent testing to anti-SARS-CoV-2 nucleocapsid protein IgG antibody testing. Latent Class Analysis was used to identify clusters of chronic COVID-19 symptoms. RESULTS: Overall, 390 adults (median [25%ile, 75%ile] age: 42 [31, 54] years) with positive SARS-CoV-2 antibodies completed the follow-up survey; 92 (24.7%) had ≥1 chronic COVID-19 symptom, with 11-month median duration of persistent symptoms (range: 1-12 months). The most common chronic COVID-19 symptoms were fatigue (11.3%), change in smell (9.5%) or taste (5.6%), muscle or joint aches (5.4%) and weakness (4.6%). There were significantly higher proportions of ≥1 persistent COVID-19 symptom (31.5% vs. 18.6%; Chi-square, P = 0.004), and particularly fatigue (15.8% vs. 7.3%, P = 0.008) and headaches (5.4% vs. 1.0%, P = 0.011) in females compared to males. Chronic COVID-19 symptoms were also increased in individuals with ≥6 acute COVID-19 symptoms, Latent class analysis revealed 4 classes of symptoms. Latent class-1 (change of smell and taste) was associated with lower anti-SARS-CoV-2 antibody levels; class-2 and 3 (multiple chronic symptoms) were associated with higher anti-SARS-CoV-2 antibody levels and more severe acute COVID-19 infection. LIMITATIONS: Ambulatory cohort with less severe acute disease. CONCLUSION: Individuals with SARS-CoV-2 infection commonly experience chronic symptoms, most commonly fatigue, changes in smell or taste and muscle/joint aches. Female sex, severity of acute COVID-19 infection, and higher anti-SARS-CoV-2 IgG levels were associated with the highest risk of having chronic COVID-19 symptoms

    Association of varying clinical manifestations and positive anti-SARS-CoV-2 IgG antibodies: a cross-sectional observational study.

    No full text
    BACKGROUND: The complex relationship between clinical manifestations of SARS-CoV-2 and individual immune responses is not fully elucidated. OBJECTIVE: To examine phenotypes of symptomatology and their relationship with positive anti-SARS-CoV-2 IgG antibody responses. METHODS: An observational study was performed of adults (≥18 years) from 5 US states. Participants completed an electronic survey and underwent testing to anti-SARS-CoV-2 nucleocapsid protein IgG antibody between May-July 2020. Latent Class Analysis was used to identify characteristic symptom clusters. RESULTS: Overall, 9,507 adults (mean±SD age: 39.6±15.0 years) completed the survey; 6,665 (70.1%) underwent antibody testing for anti-SARS-CoV-2 IgG. Positive SARS-CoV-2 antibodies were associated with self-reported positive SARS-CoV-2 nasal swab (bivariable logistic regression; OR [CI95]: 5.98 [4.83, 7.41]), household with ≥6 members (1.27 [1.14, 1.41]) and sick contact (3.65 [3.19, 4.17]), and older age (50-69 years: 1.55 [1.37, 1.76]); ≥70 years: 1.52 [1.16, 1.99]), but inversely associated with female sex (0.61 [0.55, 0.68]). Latent class analysis revealed 8 latent classes of symptoms. Latent classes-1 (all symptoms) and 4 (fever, cough, muscle ache, anosmia, dysgeusia, and headache) were associated with the highest proportion (62.0% and 57.4%) of positive antibodies, whereas classes-6 (fever, cough, muscle ache, headache) and 8 (anosmia, dysgeusia) had intermediate proportions (48.2% and 40.5%), and classes-3 (headache, diarrhea, stomach pain) and 7 (no symptoms) had the lowest proportion (7.8% and 8.5%) of positive antibodies. CONCLUSION: SARS-CoV-2 infections manifest with substantial diversity of symptoms, which are associated with variable anti-SARS-CoV-2 IgG antibody responses. Prolonged fever, anosmia and receiving supplemental oxygen therapy had strongest associations with positive SARS-CoV-2 IgG

    Unbiased discovery of autoantibodies associated with severe COVID-19 via genome-scale self-assembled DNA-barcoded protein libraries

    No full text
    Pathogenic autoreactive antibodies that may be associated with life-threatening coronavirus disease 2019 (COVID-19) remain to be identified. Here, we show that self-assembled genome-scale libraries of full-length proteins covalently coupled to unique DNA barcodes for analysis by sequencing can be used for the unbiased identification of autoreactive antibodies in plasma samples. By screening 11,076 DNA-barcoded proteins expressed from a sequence-verified human ORFeome library, the method, which we named MIPSA (for Molecular Indexing of Proteins by Self-Assembly), allowed us to detect circulating neutralizing type-I and type-III interferon (IFN) autoantibodies in five plasma samples from 55 patients with life-threatening COVID-19. In addition to identifying neutralizing type-I IFN-α and IFN-ω autoantibodies and other previously known autoreactive antibodies in patient plasma, MIPSA enabled the detection of as yet unidentified neutralizing type-III anti-IFN-λ3 autoantibodies that were not seen in healthy plasma samples or in convalescent plasma from ten non-hospitalized individuals with COVID-19. The low cost and simple workflow of MIPSA will facilitate unbiased high-throughput analyses of protein-antibody, protein-protein and protein-small-molecule interactions

    Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: a systems biology approach

    No full text
    Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid β peptide, β catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe COVID-19 patients ≥50 years of age. Follow-up analysis using binomial logistic regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the chance of developing more severe COVID-19 phenotypes

    Cross-sectional analysis reveals autoantibody signatures associated with COVID-19 severity

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with increased levels of autoantibodies targeting immunological proteins such as cytokines and chemokines. Reports further indicate that COVID-19 patients may develop a broad spectrum of autoimmune diseases due to reasons not fully understood. Even so, the landscape of autoantibodies induced by SARS-CoV-2 infection remains uncharted territory. To gain more insight, we carried out a comprehensive assessment of autoantibodies known to be linked to diverse autoimmune diseases observed in COVID-19 patients in a cohort of 231 individuals, of which 161 were COVID-19 patients (72 with mild, 61 moderate, and 28 with severe disease) and 70 were healthy controls. Dysregulated IgG and IgA autoantibody signatures, characterized mainly by elevated concentrations, occurred predominantly in patients with moderate or severe COVID-19 infection. Autoantibody levels often accompanied anti-SARS-CoV-2 antibody concentrations while stratifying COVID-19 severity as indicated by random forest and principal component analyses. Furthermore, while young versus elderly COVID-19 patients showed only slight differences in autoantibody levels, elderly patients with severe disease presented higher IgG autoantibody concentrations than young individuals with severe COVID-19. This work maps the intersection of COVID-19 and autoimmunity by demonstrating the dysregulation of multiple autoantibodies triggered during SARS-CoV-2 infection. Thus, this cross-sectional study suggests that SARS-CoV-2 infection induces autoantibody signatures associated with COVID-19 severity and several autoantibodies that can be used as biomarkers of COVID-19 severity, indicating autoantibodies as potential therapeutical targets for these patients

    Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity

    No full text
    COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity
    corecore