205 research outputs found

    Quantitative assessment of angiogenesis in murine antigen-induced arthritis by intravital fluorescence microscopy

    Get PDF
    Inhibition of angiogenesis might be a therapeutic approach to prevent joint destruction caused by the overgrowing synovial tissue during chronic joint inflammation. The aim of this study was to investigate angiogenesis in the knee joint of mice with antigen-induced arthritis (AIA) by means of intravital microscopy. In 14 mice (C57BL6/129Sv) intravital microscopic assessment was performed on day 8 after AIA induction in two groups (controls, AIA). Synovial tissue was investigated by intravital fluorescence microscopy using FITC-dextran (150 kD). Quantitative assessment of vessel density was performed according to the following categories: functional capillary density (FCD, vessels 10 mum) and FVD of vessels with angiogenic criteria (convoluted vessels, abrupt changes of diameter, vessels which are generated by sprouting and progressively pruned and remodelled). Microvessel count was performed using immunohistochemistry. There was no significant difference in FCD between the control group (337 +/- 9 cm/cm(2); mean +/-SEM) and the AIA group (359 +/- 13 cm/cm(2)). The density of vessels larger than 10 gm diameter was significantly increased in animals with AIA (135 +/- 10 vs. 61 +/- 5 cm/cm(2) in control). The density of blood vessels with angiogenic criteria was enhanced in arthritic animals (79 +/- 17 vs. 12 +/- 2 cm/cm(2) in control). There was a significant increase in the microvessel count in arthritic animals (297 +/- 25 vs. 133 +/- 16 mm(-2) in control). These findings demonstrate that angiogenesis in murine AIA can be assessed quantitatively using intravital microscopy. Further studies will address antiangiogenic strategies in AIA

    Genauigkeit eines bildfreien Navigationssystemes für die Hüftpfannenimplantation – eine anatomische Studie

    Get PDF
    The position of the acetabular cup is of decisive importance for. the function of a total hip replacement (THR). Using the conventional surgical technique, correct placement of the cup often fails due to a lack of information about pelvic tilt. With CT-based and fluoroscopically-assisted navigation procedures the accuracy of implantation has been significantly improved. However, additional radiation exposure, high cost and the increased time requirement have hampered the acceptance of these techniques. The present anatomical study evaluates the accuracy of an alternative procedure-image-free navigation. This method requires little extra effort, does not substantially delay surgery, and needs no additional imaging. Press-fit cups were implanted in 10 human cadaveric hips with the help of the image-free navigation system, and the position of the cups was checked intraoperatively with a CT-based navigation system and postoperatively by computed tomography. All cups were implanted within the targeted safe zone with an average inclination of 44degrees (range 40degrees-48degrees, SABW 2.7degrees) and an average anteversion of 18degrees (range 12-24degrees, SABW 4.1degrees). Analysis of accuracy of the image-free navigation software revealed only a small, clinically tolerable deviation in cup anteversion and cup inclination in comparison with the CT-based navigation system and the post operative CT scans. The evaluated image-free navigation system appears to be a practicable and reliable alternative to the computer-assisted implantation of acetabular cups in total hip arthroplasty

    Benefits of European climate policies for mercury air pollution

    Get PDF
    This paper presents the methodology and results of impact assessment of renewable energy policies on atmospheric emissions of mercury in Europe. The modeling exercise described here involves an interaction of several models. First, a set of energy scenarios has been developed with the REMix (Renewable Energy Mix) model that simulates different levels of penetration of renewable energies in the European power sector. The energy scenarios were input to the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) model, which prepared projections of mercury releases to the atmosphere through 2050, based on the current air pollution control policies in each country. Data on mercury emissions from individual sectors were subsequently disaggregated to a fine spatial resolution using various proxy parameters. Finally, the dispersion of mercury in the atmosphere was computed by the chemistry transport model, implemented to the air quality system, Polyphemus. The simulations provided information on changes in concentrations and depositions of various forms of mercury over Europe. Scenarios that simulate a substantial expansion of renewable energies within the power sector indicate extensive co-benefits for mercury abatement, due to the restructuring of the energy system and changes in the fuel mix. The potential for mercury reductions in Europe depends on the rate of fuel switches and renewable technology deployment, but is also influenced by the stringency and timing of the air quality measures. The overall scope for co-benefits is therefore higher in regions relying on coal combustion as a major energy source

    Genauigkeit eines bildfreien Navigationssystemes für die Hüftpfannenimplantation – eine anatomische Studie

    Get PDF
    The position of the acetabular cup is of decisive importance for. the function of a total hip replacement (THR). Using the conventional surgical technique, correct placement of the cup often fails due to a lack of information about pelvic tilt. With CT-based and fluoroscopically-assisted navigation procedures the accuracy of implantation has been significantly improved. However, additional radiation exposure, high cost and the increased time requirement have hampered the acceptance of these techniques. The present anatomical study evaluates the accuracy of an alternative procedure-image-free navigation. This method requires little extra effort, does not substantially delay surgery, and needs no additional imaging. Press-fit cups were implanted in 10 human cadaveric hips with the help of the image-free navigation system, and the position of the cups was checked intraoperatively with a CT-based navigation system and postoperatively by computed tomography. All cups were implanted within the targeted safe zone with an average inclination of 44degrees (range 40degrees-48degrees, SABW 2.7degrees) and an average anteversion of 18degrees (range 12-24degrees, SABW 4.1degrees). Analysis of accuracy of the image-free navigation software revealed only a small, clinically tolerable deviation in cup anteversion and cup inclination in comparison with the CT-based navigation system and the post operative CT scans. The evaluated image-free navigation system appears to be a practicable and reliable alternative to the computer-assisted implantation of acetabular cups in total hip arthroplasty

    Calcium/calmodulin-dependent phosphorylation of vimentin in rat sertoli cells.

    Get PDF
    Ca2+-dependent protein phosphorylation and the role of calmodulin in this process was investigated in subcellular fractions of primary cultures of rat Sertoli cells. Significant Ca2+/calmodulin-dependent protein phosphorylation in Sertoli cells was restricted to the cytosol fraction. The calmodulin dependence of these effects was confirmed by using the calmodulin inhibitor trifluoperazine. One of the Ca2+/calmodulin-dependent phosphoproteins was identified as the intermediate filament protein vimentin, based on the following criteria: (i) migration pattern in two-dimensional polyacrylamide gels, (ii) Ca2+/calmodulin-dependent phosphorylation of a 58-kilodalton protein present in detergent-insoluble intermediate filament protein extract of Sertoli cells, and (iii) peptide mapping of the phosphoprotein. These data support a role for Ca2+/calmodulin-dependent protein phosphorylation in the modulation of Sertoli cell cytoskeletal components

    Estrogenic activity assessment of environmental chemicals using in vitro assays: identification of two new estrogenic compounds.

    Get PDF
    Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis

    Optical biopsy of lymph node morphology using optical coherence tomography

    Get PDF
    Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively

    The role of pneumolysin in mediating lung damage in a lethal pneumococcal pneumonia murine model

    Get PDF
    BACKGROUND: Intranasal inoculation of Streptococcus pneumoniae D39 serotype 2 causes fatal pneumonia in mice. The cytotoxic and inflammatory properties of pneumolysin (PLY) have been implicated in the pathogenesis of pneumococcal pneumonia. METHODS: To examine the role of PLY in this experimental model we performed ELISA assays for PLY quantification. The distribution patterns of PLY and apoptosis were established by immunohistochemical detection of PLY, caspase-9 activity and TUNEL assay on tissue sections from mice lungs at various times, and the results were quantified with image analysis. Inflammatory and apoptotic cells were also quantified on lung tissue sections from antibody treated mice. RESULTS: In bronchoalveolar lavages (BAL), total PLY was found at sublytic concentrations which were located in alveolar macrophages and leukocytes. The bronchoalveolar epithelium was PLY-positive, while the vascular endothelium was not PLY reactive. The pattern and extension of cellular apoptosis was similar. Anti-PLY antibody treatment decreased the lung damage and the number of apoptotic and inflammatory cells in lung tissues. CONCLUSION: The data strongly suggest that in vivo lung injury could be due to the pro-apoptotic and pro-inflammatory activity of PLY, rather than its cytotoxic activity. PLY at sublytic concentrations induces lethal inflammation in lung tissues and is involved in host cell apoptosis, whose effects are important to pathogen survival
    corecore