118 research outputs found

    On the existence and the applications of\ud modified equations for stochastic differential\ud equations

    Get PDF
    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive a SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed

    Derivation of a dual porosity model for the uptake of nutrients by root hairs

    Get PDF
    Root hairs are thought to play an important role in mediating nutrient uptake by plants. We develop a mathematical model for the nutrient transport and uptake in the root hair zone of a single root in the soil. Nutrients are assumed to diffuse both in the soil fluid phase and within the soil particles. Nutrients can also be bound to the soil particle surfaces by reversible reactions. Using homogenization techniques we derive a macroscopic dual porosity model for nutrient diffusion and reaction in the soil which includes the effect of all root hair surfaces

    Fast stochastic simulation of biochemical reaction systems by\ud alternative formulations of the Chemical Langevin Equation

    Get PDF
    The Chemical Langevin Equation (CLE), which is a stochastic differential equation (SDE) driven by a multidimensional Wiener process, acts as a bridge between the discrete Stochastic Simulation Algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation. On the practical side, we show that in the case where there are m1 pairs of reversible reactions and m2 irreversible reactions only m1+m2 Wiener processes are required in the formulation of the CLE, whereas the standard approach uses 2m1 + m2. We illustrate our findings by considering alternative formulations of the CLE for a\ud HERG ion channel model and the Goldbeter–Koshland switch. We show that there are considerable computational savings when using our insights

    Data Assimilation: A Mathematical Introduction

    Full text link
    These notes provide a systematic mathematical treatment of the subject of data assimilation

    Homogenization for advection-diffusion in a perforated domain

    Get PDF
    The volume of a Wiener sausage constructed from a diffusion process with periodic, mean-zero, divergence-free velocity field, in dimension 3 or more, is shown to have a non-random and positive asymptotic rate of growth. This is used to establish the existence of a homogenized limit for such a diffusion when subject to Dirichlet conditions on the boundaries of a sparse and independent array of obstacles. There is a constant effective long-time loss rate at the obstacles. The dependence of this rate on the form and intensity of the obstacles and on the velocity field is investigated. A Monte Carlo algorithm for the computation of the volume growth rate of the sausage is introduced and some numerical results are presented for the Taylor–Green velocity field

    Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method

    Get PDF
    BackgroundBiochemical systems with relatively low numbers of components must be simulated stochastically in order to capture their inherent noise. Although there has recently been considerable work on discrete stochastic solvers, there is still a need for numerical methods that are both fast and accurate. The Bulirsch-Stoer method is an established method for solving ordinary differential equations that possesses both of these qualities.ResultsIn this paper, we present the Stochastic Bulirsch-Stoer method, a new numerical method for simulating discrete chemical reaction systems, inspired by its deterministic counterpart. It is able to achieve an excellent efficiency due to the fact that it is based on an approach with high deterministic order, allowing for larger stepsizes and leading to fast simulations. We compare it to the Euler ?-leap, as well as two more recent ?-leap methods, on a number of example problems, and find that as well as being very accurate, our method is the most robust, in terms of efficiency, of all the methods considered in this paper. The problems it is most suited for are those with increased populations that would be too slow to simulate using Gillespie’s stochastic simulation algorithm. For such problems, it is likely to achieve higher weak order in the moments.ConclusionsThe Stochastic Bulirsch-Stoer method is a novel stochastic solver that can be used for fast and accurate simulations. Crucially, compared to other similar methods, it better retains its high accuracy when the timesteps are increased. Thus the Stochastic Bulirsch-Stoer method is both computationally efficient and robust. These are key properties for any stochastic numerical method, as they must typically run many thousands of simulations

    Higher-order numerical methods for stochastic simulation of\ud chemical reaction systems

    Get PDF
    In this paper, using the framework of extrapolation, we present an approach for obtaining higher-order -leap methods for the Monte Carlo simulation of stochastic chemical kinetics. Specifically, Richardson extrapolation is applied to the expectations of functionals obtained by a fixed-step -leap algorithm. We prove that this procedure gives rise to second-order approximations for the first two moments obtained by the chemical master equation for zeroth- and first-order chemical systems. Numerical simulations verify that this is also the case for higher-order chemical systems of biological importance. This approach, as in the case of ordinary and stochastic differential equations, can be repeated to obtain even higher-order approximations. We illustrate the results of a second extrapolation on two systems. The biggest barrier for observing higher-order convergence is the Monte Carlo error; we discuss different strategies for reducing it

    Analysis of Brownian dynamics simulations of reversible biomolecular reactions

    Get PDF
    A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ-rho model for irreversible bimolecular reactions which was introduced in [11]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algorithm parameters are derived. The probability of geminate recombination is also investigated

    Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions

    Full text link
    A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ\lambda--\newrho model for irreversible bimolecular reactions which was introduced in [arXiv:0903.1298]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algorithm parameters are derived. The probability of geminate recombination is also investigated.Comment: 16 pages, 13 figures, submitted to SIAM Appl Mat
    • …
    corecore