457 research outputs found
A cosmic gamma-ray burst on May 14, 1975
A cosmic gamma-ray burst is reported that occurred at 29309.11 s UTC, May 14, 1975. The burst was detected at an atmospheric depth of 4 g/sq cm residual atmosphere with the University of California double scatter gamma-ray telescope launched on a balloon from Palestine, Texas at 1150 UTC, May 13, 1975. The burst was observed both in the single scatter mode by the top liquid scintillator tank in anti-coincidence with the surrounding plastic scintillator and in the double scatter mode from which energy and directional information are obtained. The burst is 24 standard deviations above the background for single scatter events. The total gamma-ray flux in the burst, incident on the atmosphere with photon energy greater than 0.5 MeV, is 0.59 + or - 0.15 photons/sq cm. The initial rise time to 90% of maximum is 0.015 + or - 0.005 s and the duration is 0.11 s. Time structure down to the 5 ms resolution of the telescope is seen. The mean flux over this time period is 5.0 + or - 1.3 photons/sq cm/s and the maximum flux is 8.5 + or - 2.1 photons/sq cm/s
Gamma rays of 0.3 to 30 MeV from PSR 0531+21
Pulsed gamma rays from the Crab Pulsar PSR 0531+21 are reported for energies of 0.3 to 30 MeV. The observations were carried out with the UCR gamma ray double Compton scatter telescope launched on a balloon from Palestine, Texas at 4.5 GV, at 2200 LT, September 29, 1978. Two 8 hr observations of the pulsar were made, the first starting at 0700 UT (0200 LT) September 30 just after reaching float altitude of 4.5 g/sq cm. Analysis of the total gamma ray flux from the Crab Nebula plus pulsar using telescope vertical cell pairs was published previously. The results presented supersede the preliminary ones. The double scatter mode of the UCR telescope measures the energy of each incident gamma ray from 1 to 30 MeV and its incident angle to a ring on the sky. The time of arrival is measured to 0.05 ms. The direction of the source is obtained from overlapping rings on the sky. The count rate of the first scatter above a threshold of 0.3 MeV is recorded every 5.12 ms. The Crab Pulsar parameters were determined from six topocentric arrival times of optical pulses
Neutron-induced 2.2 MeV background in gamma ray telescopes
Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma ray line radiation essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen
Measured performance of the new University of California gamma ray telescope
The design of the new medium energy balloon-borne gamma ray telescope is discussed. This telescope is sensitive to 1-30 MeV gamma rays. The results of the initial calibration are described. The position and energy resolutions of 32 plastic and NaI(Tl) scintillator bars, each 100 cm long are discussed. The telescope's measured angular and energy resolutions as a function of incident angle are compared with detailed Monte Carlo calculations at 1.37, 2.75 and 6.13 MeV. The expected resolutions are 5 deg FHWM and 8% at 2.75 MeV. The expected area-efficiency is 250 cm
Testing the Universality of the Stellar IMF with Chandra and HST
The stellar initial mass function (IMF), which is often assumed to be
universal across unresolved stellar populations, has recently been suggested to
be "bottom-heavy" for massive ellipticals. In these galaxies, the prevalence of
gravity-sensitive absorption lines (e.g. Na I and Ca II) in their near-IR
spectra implies an excess of low-mass ( ) stars over that
expected from a canonical IMF observed in low-mass ellipticals. A direct
extrapolation of such a bottom-heavy IMF to high stellar masses (
) would lead to a corresponding deficit of neutron stars and black
holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR
luminosity in these galaxies. Peacock et al. (2014) searched for evidence of
this trend and found that the observed number of LMXBs per unit -band
luminosity () was nearly constant. We extend this work using new and
archival Chandra X-ray Observatory (Chandra) and Hubble Space Telescope (HST)
observations of seven low-mass ellipticals where is expected to be the
largest and compare these data with a variety of IMF models to test which are
consistent with the observed . We reproduce the result of Peacock et al.
(2014), strengthening the constraint that the slope of the IMF at
must be consistent with a Kroupa-like IMF. We construct an IMF model
that is a linear combination of a Milky Way-like IMF and a broken power-law
IMF, with a steep slope ( ) for stars < 0.5 (as
suggested by near-IR indices), and that flattens out ( ) for
stars > 0.5 , and discuss its wider ramifications and limitations.Comment: Accepted for publication in ApJ; 7 pages, 2 figures, 1 tabl
Modeling the Redshift Evolution of the Normal Galaxy X-ray Luminosity Function
Emission from X-ray binaries (XRBs) is a major component of the total X-ray
luminosity of normal galaxies, so X-ray studies of high redshift galaxies allow
us to probe the formation and evolution of X-ray binaries on very long
timescales. In this paper, we present results from large-scale population
synthesis models of binary populations in galaxies from z = 0 to 20. We use as
input into our modeling the Millennium II Cosmological Simulation and the
updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently
account for the star formation history (SFH) and metallicity evolution of each
galaxy. We run a grid of 192 models, varying all the parameters known from
previous studies to affect the evolution of XRBs. We use our models and
observationally derived prescriptions for hot gas emission to create
theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins.
Models with low CE efficiencies, a 50% twins mass ratio distribution, a steeper
IMF exponent, and high stellar wind mass loss rates best match observational
results from Tzanavaris & Georgantopoulos (2008), though they significantly
underproduce bright early-type and very bright (Lx > 10d41) late-type galaxies.
These discrepancies are likely caused by uncertainties in hot gas emission and
SFHs, AGN contamination, and a lack of dynamically formed Low-mass XRBs. In our
highest likelihood models, we find that hot gas emission dominates the emission
for most bright galaxies. We also find that the evolution of the normal galaxy
X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies
with X-ray luminosities between 10d40 and 10d41 erg/s.Comment: Accepted into ApJ, 17 pages, 3 tables, 7 figures. Text updated to
address referee's comment
- …