8 research outputs found

    Lessons from a GWAS study of a wheat pre-breeding program : pyramiding resistance alleles to Fusarium crown rot

    No full text
    Much has been published on QTL detection for complex traits using bi-parental and multi-parental crosses (linkage analysis) or diversity panels (GWAS studies). While successful for detection, transferability of results to real applications has proven more difficult. Here, we combined a QTL detection approach using a pre-breeding populations which utilized intensive phenotypic selection for the target trait across multiple plant generations, combined with rapid generation turnover (i.e. “speed breeding”) to allow cycling of multiple plant generations each year. The reasoning is that QTL mapping information would complement the selection process by identifying the genome regions under selection within the relevant germplasm. Questions to answer were the location of the genomic regions determining response to selection and the origin of the favourable alleles within the pedigree. We used data from a pre-breeding program that aimed at pyramiding different resistance sources to Fusarium crown rot into elite (but susceptible) wheat backgrounds. The population resulted from a complex backcrossing scheme involving multiple resistance donors and multiple elite backgrounds, akin to a MAGIC population (985 genotypes in total, with founders, and two major offspring layers within the pedigree). A significant increase in the resistance level was observed (i.e. a positive response to selection) after the selection process, and 17 regions significantly associated with that response were identified using a GWAS approach. Those regions included known QTL as well as potentially novel regions contributing resistance to Fusarium crown rot. In addition, we were able to trace back the sources of the favourable alleles for each QTL. We demonstrate that QTL detection using breeding populations under selection for the target trait can identify QTL controlling the target trait and that the frequency of the favourable alleles was increased as a response to selection, thereby validating the QTL detected. This is a valuable opportunistic approach that can provide QTL information that is more easily transferred to breeding applications

    Differential metabolic host response to pathogens associated with community-acquired pneumonia

    Get PDF
    Background: Metabolic changes induced by the host immune response to pathogens found in patients with community-acquired pneumonia (CAP) may provide insight into its pathogenesis. In this study, we characterized differences in the host metabolic response to common CAP-associated pathogens. Method: Targeted metabolomic profiling was performed on serum samples obtained from hospitalized CAP patients (n = 119) at admission. We quantified 347 unique metabolites across multiple biochemical classes, including amines, acylcarnitines, and signaling lipids. We evaluated if unique associations between metabolite levels and specific CAP-associated pathogens could be identified. Results: Several acylcarnitines were found to be elevated in C. burnetii and herpes simplex virus and lowered in M. pneumoniae as compared to other pathogens. Phenylalanine and kynurenine were found elevated in L. pneumophila as compared to other pathogens. S-methylcysteine was elevated in patients with M. pneumoniae, and these patients also showed lowered cortisol levels in comparison to almost all other pathogens. For the herpes simplex virus, we observed a unique elevation of eicosanoids and several amines. Many lysophosphatidylcholines showed an altered profile in C. burnetii versus S. pneumoniae, L. pneumophila, and respiratory syncytial virus. Finally, phosphatidylcholines were negatively affected by the influenza virus in comparison to S. pneumoniae. Conclusions: In this exploratory analysis, metabolites from different biochemical classes were found to be altered in serum samples from patients with different CAP-associated pathogens, which may be used for hypothesis generation in studies on differences in pathogen host response and pathogenesis of CAP

    Beyond the randomized clinical trial: innovative data science to close the pediatric evidence gap.

    No full text
    Despite the application of advanced statistical and pharmacometric approaches to pediatric trial data, a large pediatric evidence gap still remains. Here, we discuss how to collect more data from children by using real‐world data from electronic health records, mobile applications, wearables, and social media. The large datasets collected with these approaches enable and may demand the use of artificial intelligence and machine learning to allow the data to be analyzed for decision making. Applications of this approach are presented, which include the prediction of future clinical complications, medical image analysis, identification of new pediatric end points and biomarkers, the prediction of treatment nonresponders, and the prediction of placebo‐responders for trial enrichment. Finally, we discuss how to bring machine learning from science to pediatric clinical practice. We conclude that advantage should be taken of the current opportunities offered by innovations in data science and machine learning to close the pediatric evidence gap.ISSN:0009-9236ISSN:1532-653

    Metabolomic profiling of microbial disease etiology in community-acquired pneumonia

    Get PDF
    Diagnosis of microbial disease etiology in community-acquired pneumonia (CAP) remains challenging. We undertook a large-scale metabolomics study of serum samples in hospitalized CAP patients to determine if host-response associated metabolites can enable diagnosis of microbial etiology, with a specific focus on discrimination between the major CAP pathogen groups S. pneumoniae, atypical bacteria, and respiratory viruses. Targeted metabolomic profiling of serum samples was performed for three groups of hospitalized CAP patients with confirmed microbial etiologies: S. pneumoniae (n = 48), atypical bacteria (n = 47), or viral infections (n = 30). A wide range of 347 metabolites was targeted, including amines, acylcarnitines, organic acids, and lipids. Single discriminating metabolites were selected using Student's T-test and their predictive performance was analyzed using logistic regression. Elastic net regression models were employed to discover metabolite signatures with predictive value for discrimination between pathogen groups. Metabolites to discriminate S. pneumoniae or viral pathogens from the other groups showed poor predictive capability, whereas discrimination of atypical pathogens from the other groups was found to be possible. Classification of atypical pathogens using elastic net regression models was associated with a predictive performance of 61% sensitivity, 86% specificity, and an AUC of 0.81. Targeted profiling of the host metabolic response revealed metabolites that can support diagnosis of microbial etiology in CAP patients with atypical bacterial pathogens compared to patients with S. pneumoniae or viral infections

    Optimizing Predictive Performance of Bayesian Forecasting for Vancomycin Concentration in Intensive Care Patients

    No full text
    Purpose: Bayesian forecasting is crucial for model-based dose optimization based on therapeutic drug monitoring (TDM) data of vancomycin in intensive care (ICU) patients. We aimed to evaluate the performance of Bayesian forecasting using maximum a posteriori (MAP) estimation for model-based TDM. Methods: We used a vancomycin TDM data set (n = 408 patients). We compared standard MAP-based Bayesian forecasting with two alternative approaches: (i) adaptive MAP which handles data over multiple iterations, and (ii) weighted MAP which weights the likelihood contribution of data. We evaluated the percentage error (PE) for seven scenarios including historical TDM data from the preceding day up to seven days. Results: The mean of median PEs of all scenarios for the standard MAP, adaptive MAP and weighted MAP method were − 7.7%, −4.5% and − 6.7%. The adaptive MAP also showed the narrowest inter-quartile range of PE. In addition, regardless of MAP method, including historical TDM data further in the past will increase prediction errors. Conclusions: The proposed adaptive MAP method outperforms standard MAP in predictive performance and may be considered for improvement of model-based dose optimization. The inclusion of historical data beyond either one day (standard MAP and weighted MAP) or two days (adaptive MAP) reduces predictive performance

    Metabolomic profiling of microbial disease etiology in community-acquired pneumonia.

    Get PDF
    Diagnosis of microbial disease etiology in community-acquired pneumonia (CAP) remains challenging. We undertook a large-scale metabolomics study of serum samples in hospitalized CAP patients to determine if host-response associated metabolites can enable diagnosis of microbial etiology, with a specific focus on discrimination between the major CAP pathogen groups S. pneumoniae, atypical bacteria, and respiratory viruses. Targeted metabolomic profiling of serum samples was performed for three groups of hospitalized CAP patients with confirmed microbial etiologies: S. pneumoniae (n = 48), atypical bacteria (n = 47), or viral infections (n = 30). A wide range of 347 metabolites was targeted, including amines, acylcarnitines, organic acids, and lipids. Single discriminating metabolites were selected using Student's T-test and their predictive performance was analyzed using logistic regression. Elastic net regression models were employed to discover metabolite signatures with predictive value for discrimination between pathogen groups. Metabolites to discriminate S. pneumoniae or viral pathogens from the other groups showed poor predictive capability, whereas discrimination of atypical pathogens from the other groups was found to be possible. Classification of atypical pathogens using elastic net regression models was associated with a predictive performance of 61% sensitivity, 86% specificity, and an AUC of 0.81. Targeted profiling of the host metabolic response revealed metabolites that can support diagnosis of microbial etiology in CAP patients with atypical bacterial pathogens compared to patients with S. pneumoniae or viral infections
    corecore