3,142 research outputs found
The impact of a network split on cascading failure processes
Cascading failure models are typically used to capture the phenomenon where
failures possibly trigger further failures in succession, causing knock-on
effects. In many networks this ultimately leads to a disintegrated network
where the failure propagation continues independently across the various
components. In order to gain insight in the impact of network splitting on
cascading failure processes, we extend a well-established cascading failure
model for which the number of failures obeys a power-law distribution. We
assume that a single line failure immediately splits the network in two
components, and examine its effect on the power-law exponent. The results
provide valuable qualitative insights that are crucial first steps towards
understanding more complex network splitting scenarios
Black hole mergers in the universe
Mergers of black-hole binaries are expected to release large amounts of
energy in the form of gravitational radiation. However, binary evolution models
predict merger rates too low to be of observational interest. In this paper we
explore the possibility that black holes become members of close binaries via
dynamical interactions with other stars in dense stellar systems. In star
clusters, black holes become the most massive objects within a few tens of
millions of years; dynamical relaxation then causes them to sink to the cluster
core, where they form binaries. These black-hole binaries become more tightly
bound by superelastic encounters with other cluster members, and are ultimately
ejected from the cluster. The majority of escaping black-hole binaries have
orbital periods short enough and eccentricities high enough that the emission
of gravitational radiation causes them to coalesce within a few billion years.
We predict a black-hole merger rate of about per year per
cubic megaparsec, implying gravity wave detection rates substantially greater
than the corresponding rates from neutron star mergers. For the first
generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we
expect about one detection during the first two years of operation. For its
successor LIGO-II, the rate rises to roughly one detection per day. The
uncertainties in these numbers are large. Event rates may drop by about an
order of magnitude if the most massive clusters eject their black hole binaries
early in their evolution.Comment: 12 pages, ApJL in pres
McScatter: a Simple Three-Body Scattering Package with Stellar Evolution
We describe a simple computer package which illustrates a method of combining
stellar dynamics with stellar evolution. Though the method is intended for
elaborate applications (especially the dynamical evolution of rich star
clusters) it is illustrated here in the context of three-body scattering, i.e.
interactions between a binary star and a field of single stars. We describe the
interface between the dynamics and the two independent packages which describe
the internal evolution of single stars and binaries. We also give an example
application, and introduce a stand alone utility for the visual presentation of
simulation results.Comment: 16 pages, Accepted for publication in New Astronomy. Source codes
available at: http://manybody.org/manybody/McScatter.html and
http://www.manybody.org/manybody/roche.htm
Mixing in massive stellar mergers
The early evolution of dense star clusters is possibly dominated by close
interactions between stars, and physical collisions between stars may occur
quite frequently. Simulating a stellar collision event can be an intensive
numerical task, as detailed calculations of this process require hydrodynamic
simulations in three dimensions. We present a computationally inexpensive
method in which we approximate the merger process, including shock heating,
hydrodynamic mixing and mass loss, with a simple algorithm based on
conservation laws and a basic qualitative understanding of the hydrodynamics of
stellar mergers. The algorithm relies on Archimedes' principle to dictate the
distribution of the fluid in the stable equilibrium situation. We calibrate and
apply the method to mergers of massive stars, as these are expected to occur in
young and dense star clusters. We find that without the effects of microscopic
mixing, the temperature and chemical composition profiles in a collision
product can become double-valued functions of enclosed mass. Such an unphysical
situation is mended by simulating microscopic mixing as a post-collision
effect. In this way we find that head-on collisions between stars of the same
spectral type result in substantial mixing, while mergers between stars of
different spectral type, such as type B and O stars (10 and 40\msun
respectively), are subject to relatively little hydrodynamic mixing.Comment: Accepted by MNRA
Marketing strategies to utilise Central Otago's resources
Paper presented at the 48th New Zealand Grassland Association Conference, 3-6 November 1986, Alexandra.This paper provides an overview of trends in marketing at the national level and in regions
such as Central Otago.
The movement away from centrally co-ordinated marketing strategies and ihe increased
sophistication of marketing and processing are highlighted. Such developments have
implications for the structure of the agricultural and horticultural marketing systems. It is
suggested that there is a requirement for improved strategy development and planning by
individual firms. This can best be aided at the national level, by considering ways in which the
planning by individual firms can be improved. Several specific areas in which improvements
could be made are discussed
The solar siblings in the Gaia era
We perform realistic simulations of the Sun's birth cluster in order to
predict the current distribution of solar siblings in the Galaxy. We study the
possibility of finding the solar siblings in the Gaia catalogue by using only
positional and kinematic information. We find that the number of solar siblings
predicted to be observed by Gaia will be around 100 in the most optimistic
case, and that a phase space only search in the Gaia catalogue will be
extremely difficult. It is therefore mandatory to combine the chemical tagging
technique with phase space selection criteria in order to have any hope of
finding the solar siblings.Comment: To be published in the proceedings of the GREAT-ITN conference "The
Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases", 1-5
December 2014, University of Barcelona, Spain, EAS Publications Series, eds
Nicholas Walton, Francesca Figueras, and Caroline Soubira
How many young star clusters exist in the Galactic center?
We study the evolution and observability of young compact star clusters
within about 200pc of the Galactic center. Calculations are performed using
direct N-body integration on the GRAPE-4, including the effects of both stellar
and binary evolution and the external influence of the Galaxy. The results of
these detailed calculations are used to calibrate a simplified model applicable
over a wider range of cluster initial conditions. We find that clusters within
200 pc from the Galactic center dissolve within about 70 Myr. However, their
projected densities drop below the background density in the direction of the
Galactic center within 20 Myr, effectively making these clusters undetectable
after that time. Clusters farther from the Galactic center but at the same
projected distance are more strongly affected by this selection effect, and may
go undetected for their entire lifetimes. Based on these findings, we conclude
that the region within 200 pc of the Galactic center could easily harbor some
50 clusters with properties similar to those of the Arches or the Quintuplet
systems.Comment: ApJ Letters in pres
- …