886 research outputs found
Commensurate-Incommensurate Phase Transitions for Multichain Quantum Spin Models: Exact Results
The behavior in an external magnetic field is studied for a wide class of
multichain quantum spin models. It is shown that the magnetic field together
with the interchain couplings cause commensurate-incommensurate phase
transitions between the gapless phases in the ground state. The conformal limit
of these models is studied and it is shown that the low-lying excitations for
the incommensurate phases are not independent. A scenario for the transition
from one to two space dimensions for the integrable multichain models is
proposed. The similarities in the external field behavior for the quantum
multichain spin models and a wide class of quantum field theories are
discussed. The exponents for the gaps caused by relevant perturbations of the
models are calculated.Comment: 23 pages, LaTeX, typos correcte
Metal-nonmetal transition in LixCoO2 thin film and thermopower enhancement at high Li concentration
We investigate the transport properties of LixCoO2 thin films whose
resistivities are nearly an order of magnitude lower than those of the bulk
polycrystals. A metal-nonmetal transition occurs at ~0.8 in a biphasic domain,
and the Seebeck coefficient (S) is drastically increased at ~140 K (= T*) with
increasing the Li concentration to show a peak of magnitude ~120 \muV/K in the
S-T curve of x = 0.87. We show that T* corresponds to a crossover temperature
in the conduction, most likely reflecting the correlation-induced temperature
dependence in the low-energy excitations
Single-electron latch with granular film charge leakage suppressor
A single-electron latch is a device that can be used as a building block for
Quantum-dot Cellular Automata (QCA) circuits. It consists of three nanoscale
metal "dots" connected in series by tunnel junctions; charging of the dots is
controlled by three electrostatic gates. One very important feature of a
single-electron latch is its ability to store ("latch") information represented
by the location of a single electron within the three dots. To obtain latching,
the undesired leakage of charge during the retention time must be suppressed.
Previously, to achieve this goal, multiple tunnel junctions were used to
connect the three dots. However, this method of charge leakage suppression
requires an additional compensation of the background charges affecting each
parasitic dot in the array of junctions. We report a single-electron latch
where a granular metal film is used to fabricate the middle dot in the latch
which concurrently acts as a charge leakage suppressor. This latch has no
parasitic dots, therefore the background charge compensation procedure is
greatly simplified. We discuss the origins of charge leakage suppression and
possible applications of granular metal dots for various single-electron
circuits.Comment: 21 pages, 4 figure
Hidden Kondo Effect in a Correlated Electron Chain
We develop a general Bethe Ansatz formalism for diagonalizing an integrable
model of a magnetic impurity of arbitrary spin coupled ferro- or
antiferromagnetically to a chain of interacting electrons. The method is
applied to an open chain, with the exact solution revealing a ``hidden'' Kondo
effect driven by forward electron scattering off the impurity. We argue that
the so-called ``operator reflection matrices'' proposed in recent Bethe Ansatz
studies of related models emulate only forward electron-impurity scattering
which may explain the absence of complete Kondo screening for certain values of
the impurity-electron coupling in these models.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let
Thermoelectric performance of weakly coupled granular materials
We study thermoelectric properties of inhomogeneous nanogranular materials
for weak tunneling conductance between the grains, g_t < 1. We calculate the
thermopower and figure of merit taking into account the shift of the chemical
potential and the asymmetry of the density of states in the vicinity of the
Fermi surface. We show that the weak coupling between the grains leads to a
high thermopower and low thermal conductivity resulting in relatively high
values of the figure of merit on the order of one. We estimate the temperature
at which the figure of merit has its maximum value for two- and
three-dimensional samples. Our results are applicable for many emerging
materials, including artificially self-assembled nanoparticle arrays.Comment: 4 pages, 3 figure
Thermoelectric performance of granular semiconductors
We study thermoelectric properties of granular semiconductors with weak
tunneling conductance between the grains, g_t < 1. We calculate the thermopower
and figure of merit taking into account the shift of the chemical potential and
the asymmetry of the density of states in the vicinity of the Fermi surface due
to n- or p-type doping in the Efros-Shklovskii regime for temperatures less
than the charging energy. We show that for weakly coupled semiconducting grains
the figure of merit is optimized for grain sizes of order 5nm for typical
materials and its values can be larger than one. We also study the case of
compensated granular semiconductors and show that in this case the thermopower
can be still finite, although two to three orders of magnitude smaller than in
the uncompensated regime.Comment: 4 pages, 4 figure
Exact Thermodynamics of Disordered Impurities in Quantum Spin Chains
Exact results for the thermodynamic properties of ensembles of magnetic
impurities with randomly distributed host-impurity couplings in the quantum
antiferromagnetic Heisenberg model are presented. Exact calculations are done
for arbitrary values of temperature and external magnetic field. We have shown
that for strong disorder the quenching of the impurity moments is absent. For
weak disorder the screening persists, but with the critical non-Fermi-liquid
behaviors of the magnetic susceptibility and specific heat. A comparison with
the disordered Kondo effect experiments in dirty metallic alloys is performed.Comment: 4 pages Late
Antiresonance and interaction-induced localization in spin and qubit chains with defects
We study a spin chain with an anisotropic XXZ coupling in an external field.
Such a chain models several proposed types of a quantum computer. The chain
contains a defect with a different on-site energy. The interaction between
excitations is shown to lead to two-excitation states localized next to the
defect. In a resonant situation scattering of excitations on each other might
cause decay of an excitation localized on the defect. We find that destructive
quantum interference suppresses this decay. Numerical results confirm the
analytical predictions.Comment: Updated versio
Persistent currents in mesoscopic rings with a quantum dot
Using the Anderson model in the Kondo regime, we calculate the persistent
current j in a ring with an embedded quantum dot (QD) as a function of the
Aharonov-Bohm flux Phi for different ring length L, temperature T and
broadening of the conduction states delta . For T=delta =0 and L >> xi, where
xi is the Kondo screening length, Lj tends to the value for a non interacting
ideal ring, while it is suppressed for a side coupled QD. For any L/xi, Lj is
also suppressed when either T or delta increase above a fraction of the level
spacing which depends on Phi.Comment: 5 pages, 6 figures, submitted to Phys. Rev. B, (Refs. added
Kondo effect in a Luttinger liquid: nonuniversality of the Wilson ratio
Using a precise coset Ising-Bose representation, we show how backscattering
of electrons off a magnetic impurity destabilizes the two-channel Kondo fixed
point and drives the system to a new fixed point, in agreement with previous
results. In addition, we verify the scaling proposed by Furusaki and Nagaosa
and prove that the other possible critical fixed point, namely the local Fermi
liquid class, is not completely universal when backscattering is included
because the Wilson ratio is not well-defined in the spinon basis.Comment: 4 pages, RevTeX; to appear in Physical Review
- …