3 research outputs found

    Impact of secondary succession in abandoned fields on some properties of acidic sandy soils

    Get PDF
    Abandonment of agricultural lands in recent decades is occurring mainly in Europe, North America and Oceania, and changing the fate of landscapes as the ecosystem recovers during fallow stage. The objective of this study was to find the impact of secondary succession in abandoned fields on some parameters of acidic sandy soils in the Borská nížina lowland (southwestern Slovakia). We investigated soil chemical (pH and soil organic carbon content), hydrophysical (water sorptivity, and hydraulic conductivity), and water repellency (water drop penetration time, water repellency cessation time, repellency index, and modified repellency index) parameters, as well as the ethanol sorptivity of the studied soils. Both the hydrophysical and chemical parameters decreased significantly during abandonment of the three investigated agricultural fields. On the other hand, the water repellency parameters increased significantly, but the ethanol sorptivity did not change during abandonment. As the ethanol sorptivity depends mainly on soil pore size, the last finding could mean that the pore size of acidic sandy soils did not change during succession

    The Effect of Heating on Properties of Sandy Soils

    No full text
    Although burning grass and crop residues is prohibited in many countries, farmers perceive it as a quick and inexpensive way to eliminate unwanted biomass. The aim of this study was to estimate the impact of heating temperature (simulation of biomass burning) on the studied properties (soil organic carbon (SOC) content, pH(H2O), water drop penetration time, WDPT, and contact angle, CA) of acidic sandy soils. Soil samples were taken from the experimental sites S1, S2, and S3 at Studienka village in the Borská nížina lowland (southwestern Slovakia). Experimental site S1 was arable land, experimental site S2 was arable land abandoned for approximately 10 years, and experimental site S3 was arable land abandoned for approximately 30 years with scattered Scots pine (Pinus sylvestris L.) trees. It was found that all the soil properties studied were strongly affected by heating. A drop in SOC was observed in all the soils for the heating temperature between 20 and 600 °C. Due to the incomplete combustion of SOC, a small (0.1–0.7%) SOC content was recorded even in soils heated to between 600 and 900 °C. An increase in pH(H2O) was observed in all the soils for the heating temperature higher than 300 °C. Soil from the experimental site S1 was wettable (WDPT 0° measured in soils for the heating temperature between 400 and 800 °C, as a consequence of the small SOC contents due to the incomplete combustion of SOC, is a novelty of this study which demonstrates that CA is more sensitive to the changes in subcritical water repellency than WDPT

    Peculiarities of Infiltration Measurements in Water-Repellent Forest Soil

    No full text
    The paper deals with measurements of water infiltration carried out on a well-developed forest floor formed by needle-leaf litter of Norway spruce. Three field methods (tension disk permeameter, single-ring infiltrometer and Guelph permeameter) were used to determine the soil hydraulic conductivity. The results were strongly influenced by the water repellency at the interface between the O- and A-horizons. This interface was severely water repellent during the hot and dry summer season, regardless of the generally humid mountain climate of the High Tatras foothill. The single-ring method paradoxically provided lower hydraulic conductivity (3.2 × 10−4 ± 1.3 × 10−4) compared to the tension disk permeameter (8.5 × 10−4 ± 3.3 × 10−4) due to the presence of the water-repellent O/A-interface. This effect was also observed with the Guelph permeameter method, which gave the lowest value (5.6 × 10−5 ± 4.3 × 10−5). Abrupt retardation of infiltration on the water-repellent interface may generate shallow subsurface runoff (as was proved by the irrigation experiment) or litter splash during extreme rainfall events and promote water flow to deeper soil horizons through preferential pathways. The observed effects of the forest floor on rainfall infiltration will depend on the seasonal variability of soil water repellency. Although the forest floor is a source of hydrophobic substances that cause water repellency at the O/A-interface and can trigger runoff generation, at the same time its cohesive duff layer protects the forest soil from erosion
    corecore