5 research outputs found

    Reactive astrogliosis in the era of single-cell transcriptomics

    Get PDF
    Reactive astrogliosis is a reaction of astrocytes to disturbed homeostasis in the central nervous system (CNS), accompanied by changes in astrocyte numbers, morphology, and function. Reactive astrocytes are important in the onset and progression of many neuropathologies, such as neurotrauma, stroke, and neurodegenerative diseases. Single-cell transcriptomics has revealed remarkable heterogeneity of reactive astrocytes, indicating their multifaceted functions in a whole spectrum of neuropathologies, with important temporal and spatial resolution, both in the brain and in the spinal cord. Interestingly, transcriptomic signatures of reactive astrocytes partially overlap between neurological diseases, suggesting shared and unique gene expression patterns in response to individual neuropathologies. In the era of single-cell transcriptomics, the number of new datasets steeply increases, and they often benefit from comparisons and integration with previously published work. Here, we provide an overview of reactive astrocyte populations defined by single-cell or single-nucleus transcriptomics across multiple neuropathologies, attempting to facilitate the search for relevant reference points and to improve the interpretability of new datasets containing cells with signatures of reactive astrocytes

    Reactive astrogliosis in the era of single-cell transcriptomics

    Get PDF
    Reactive astrogliosis is a reaction of astrocytes to disturbed homeostasis in the central nervous system (CNS), accompanied by changes in astrocyte numbers, morphology, and function. Reactive astrocytes are important in the onset and progression of many neuropathologies, such as neurotrauma, stroke, and neurodegenerative diseases. Single-cell transcriptomics has revealed remarkable heterogeneity of reactive astrocytes, indicating their multifaceted functions in a whole spectrum of neuropathologies, with important temporal and spatial resolution, both in the brain and in the spinal cord. Interestingly, transcriptomic signatures of reactive astrocytes partially overlap between neurological diseases, suggesting shared and unique gene expression patterns in response to individual neuropathologies. In the era of single-cell transcriptomics, the number of new datasets steeply increases, and they often benefit from comparisons and integration with previously published work. Here, we provide an overview of reactive astrocyte populations defined by single-cell or single-nucleus transcriptomics across multiple neuropathologies, attempting to facilitate the search for relevant reference points and to improve the interpretability of new datasets containing cells with signatures of reactive astrocytes

    Table_1_Reactive astrogliosis in the era of single-cell transcriptomics.pdf

    No full text
    Reactive astrogliosis is a reaction of astrocytes to disturbed homeostasis in the central nervous system (CNS), accompanied by changes in astrocyte numbers, morphology, and function. Reactive astrocytes are important in the onset and progression of many neuropathologies, such as neurotrauma, stroke, and neurodegenerative diseases. Single-cell transcriptomics has revealed remarkable heterogeneity of reactive astrocytes, indicating their multifaceted functions in a whole spectrum of neuropathologies, with important temporal and spatial resolution, both in the brain and in the spinal cord. Interestingly, transcriptomic signatures of reactive astrocytes partially overlap between neurological diseases, suggesting shared and unique gene expression patterns in response to individual neuropathologies. In the era of single-cell transcriptomics, the number of new datasets steeply increases, and they often benefit from comparisons and integration with previously published work. Here, we provide an overview of reactive astrocyte populations defined by single-cell or single-nucleus transcriptomics across multiple neuropathologies, attempting to facilitate the search for relevant reference points and to improve the interpretability of new datasets containing cells with signatures of reactive astrocytes.</p

    Glioblastoma and cerebral organoids: development and analysis of an in vitro model for glioblastoma migration

    No full text
    It is currently challenging to adequately model the growth and migration of glioblastoma using two‐dimensional (2D) in vitro culture systems as they quickly lose the original, patient‐specific identity and heterogeneity. However, with the advent of three‐dimensional (3D) cell cultures and human‐induced pluripotent stem cell (iPSC)‐derived cerebral organoids (COs), studies demonstrate that the glioblastoma‐CO (GLICO) coculture model helps to preserve the phenotype of the patient‐specific tissue. Here, we aimed to set up such a model using mature COs and develop a pipeline for subsequent analysis of cocultured glioblastoma. Our data demonstrate that the growth and migration of the glioblastoma cell line within the mature COs are significantly increased in the presence of extracellular matrix proteins, shortening the time needed for glioblastoma to initiate migration. We also describe in detail the method for the visualization and quantification of these migrating cells within the GLICO model. Lastly, we show that this coculture model (and the human brain‐like microenvironment) can significantly transform the gene expression profile of the established U87 glioblastoma cell line into proneural and classical glioblastoma cell types
    corecore