78 research outputs found

    Progress of Autophagy Related Research in the Treatment of Ophthalmic Diseases

    Get PDF
    Autophagy is a process in which some organelles and proteins are wrapped by cells into specific membranes and then transported to lysosomes to degrade these membranes, ultimately degrading small molecules and energy. Autophagy can make cells have a certain tolerance to starvation, and remove damaged organelles and protein structure dislocation caused by cell aging, so as to balance the intracellular environment. Autophagy includes autophagy molecules, microactive autophagy and macrophage autophagy. The mechanism characteristics of autophagy itself have aroused the upsurge of relevant application research, and more and more diseases are related to it. This paper reviews the research progress of autophagy in novel clinical application of autophagy

    Development of a Vacuum Ultra-Violet Laser-Based Angle-Resolved Photoemission System with a Super-High Energy Resolution Better Than 1 meV

    Full text link
    The design and performance of the first vacuum ultra-violet (VUV) laser-based angle-resolved photoemission (ARPES) system are described. The VUV laser with a photon energy of 6.994 eV and bandwidth of 0.26 meV is achieved from the second harmonic generation using a novel non-linear optical crystal KBe2BO3F2 (KBBF). The new VUV laser-based ARPES system exhibits superior performance, including super-high energy resolution better than 1 meV, high momentum resolution, super-high photon flux and much enhanced bulk sensitivity, which are demonstrated from measurements on a typical Bi2Sr2CaCu2O8 high temperature superconductor. Issues and further development related to the VUV laser-based photoemission technique are discussed.Comment: 29 pages, 10 figures, submitted to Review of Scientific Instrument

    Unusual Fermi Surface Sheet-Dependent Band Splitting in Sr2RuO4 Revealed by High Resolution Angle-Resolved Photoemission

    Full text link
    High resolution angle-resolved photoemission measurements have been carried out on Sr2RuO4. We observe clearly two sets of Fermi surface sheets near the (\pi,0)-(0,\pi) line which are most likely attributed to the surface and bulk Fermi surface splitting of the \beta band. This is in strong contrast to the nearly null surface and bulk Fermi surface splitting of the \alpha band although both have identical orbital components. Extensive band structure calculations are performed by considering various scenarios, including structural distortion, spin-orbit coupling and surface ferromagnetism. However, none of them can explain such a qualitative difference of the surface and bulk Fermi surface splitting between the \alpha and \beta sheets. This unusual behavior points to an unknown order on the surface of Sr2RuO4 that remains to be uncovered. Its revelation will be important for studying and utilizing novel quantum phenomena associated with the surface of Sr2RuO4 as a result of its being a possible p-wave chiral superconductor and a topological superconductor.Comment: 13 pages, 4 figure
    • …
    corecore