282 research outputs found

    Magnocaine: Physical Compatibility and Chemical Stability of Magnesium Sulphate and Lidocaine Hydrochloride in Prefilled Syringes.

    Get PDF
    OBJECTIVE: To evaluate the physical compatibility and chemical stability of mixtures of magnesium sulphate and lidocaine in order to determine the feasibility of manufacturing a prefilled syringe combining these two drugs for use as an intramuscular (IM) loading dose for eclampsia prevention and/or treatment. This ready-to-use mixture will provide a more tolerable and accessible route of administration appropriate for widespread use. METHODS: Physical compatibility (pH, colour, and formation of precipitate) and chemical stability (maintaining > 90% of initial concentrations) of mixtures of MgSO4, using both commercially available MgSO4 (50%) and MgSO4 reconstituted from salt (61%), with lidocaine hydrochloride (2%) were evaluated every 14 days over six months. The concentration of lidocaine was determined by a stability indicating high performance liquid chromatographic method, while the concentration of magnesium was determined by an automated chemistry analyzer. RESULTS: No changes in pH, color or precipitates were observed for up to 6 months. The 95% confidence interval of the slope of the curve relating concentration to time, determined by linear regression, indicated that only the admixtures of commercially-available magnesium sulfate and lidocaine as well as the 61% magnesium sulfate solution (reconstituted from salt) maintained at least 90% of the initial concentration of both drugs at 25°C and 40°C at 6 months. CONCLUSIONS: Commercially available MgSO4 and lidocaine hydrochloride, when combined, are stable in a pre-filled syringe for at least six months in high heat and humidity conditions. This finding represents the first step in improving the administration of magnesium sulphate in the treatment and prevention of eclampsia in under-resourced settings

    Identification of a myometrial molecular profile for dystocic labor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common indication for cesarean section (CS) in nulliparous women is dystocia secondary to ineffective myometrial contractility. The aim of this study was to identify a molecular profile in myometrium associated with dystocic labor.</p> <p>Methods</p> <p>Myometrial biopsies were obtained from the upper incisional margins of nulliparous women undergoing lower segment CS for dystocia (n = 4) and control women undergoing CS in the second stage who had demonstrated efficient uterine action during the first stage of labor (n = 4). All patients were in spontaneous (non-induced) labor and had received intrapartum oxytocin to accelerate labor. RNA was extracted from biopsies and hybridized to Affymetrix HuGene U133A Plus 2 microarrays. Internal validation was performed using quantitative SYBR Green Real-Time PCR.</p> <p>Results</p> <p>Seventy genes were differentially expressed between the two groups. 58 genes were down-regulated in the dystocia group. Gene ontology analysis revealed 12 of the 58 down-regulated genes were involved in the immune response. These included (ERAP2, (8.67 fold change (FC)) HLA-DQB1 (7.88 FC) CD28 (2.60 FC), LILRA3 (2.87 FC) and TGFBR3 (2.1 FC)) Hierarchical clustering demonstrated a difference in global gene expression patterns between the samples from dystocic and non-dystocic labours. RT-PCR validation was performed on 4 genes ERAP2, CD28, LILRA3 and TGFBR3</p> <p>Conclusion</p> <p>These findings suggest an underlying molecular basis for dystocia in nulliparous women in spontaneous labor. Differentially expressed genes suggest an important role for the immune response in dystocic labor and may provide important indicators for new diagnostic assays and potential intrapartum therapeutic targets.</p

    Bureau V

    No full text
    Syracuse University School of Architecture Fall 2014 Lecture Series: Bureau V by Peter Zuspan, Stella Lee, and Laura Trevino on October 14, 2014 at Slocum Hal
    corecore