12 research outputs found
Dexmedetomidine reduces neuropathic pain in a rat model of skin/muscle incision and retraction
Dexmedetomidine has been proposed as a novel anesthetic adjuvant. However, it remains unclear whether peripheral administration of dexmedetomidine is safe and effective to reduce acute postoperative pain. This study aimed to examine the effects of dexmedetomidine on neuropathic pain. Adult male Sprague-Dawley rats were anaesthetized and randomly allocated into four groups (n = 8): Groups S, R, RD1, and RD5 were injected with saline, 0.5% ropivacaine, 0.5% ropivacaine combined with 1 μg dexmedetomidine, and 0.5% ropivacaine combined with 5 μg dexmedetomidine, respectively, around the saphenous nerve. Then, the rats were subjected to skin/muscle incision and retraction (SMIR) surgery in the medial thigh. Mechanical and heat sensitivity was evaluated and morphology of the dorsal root ganglion (DRG) neurons was observed by electron microscopy. Some 62.5%, 50%, 12.5%, and 25% of rats developed mechanical hypersensitivity in Groups S, R, RD1, and RD5, respectively. The number of swollen mitochondria in DRG neurons was significantly more in Group S (257.2 ± 60.9) and Group R (291.6 ± 82.1) than in Group RD1 (97.2 ± 33.3) and Group RD5 (13.6 ± 17.9). In addition, the edema in endoplasmic reticulum and Golgi apparatus was decreased in Group RD1 and Group RD5 compared with Group S and Group R. Peripheral administration of dexmedetomidine improves mechanical and heat hyperalgesia and mitigates postoperative pain
Dexmedetomidine reduces neuropathic pain in a rat model of skin/muscle incision and retraction
Background: Dexmedetomidine has been proposed as a novel anesthetic adjuvant. However, it remains unclear whether peripheral administration of dexmedetomidine is safe and effective to reduce acute postoperative pain. This study aimed to examine the effects of dexmedetomidine on neuropathic pain.
Methods: Adult male Sprague-Dawley rats were anaesthetized and randomly allocated into four groups (n = 8): Groups S, R, RD1, and RD5 were injected with saline, 0.5% ropivacaine, 0.5% ropivacaine combined with 1 μg dexmedetomidine, and 0.5% ropivacaine combined with 5 μg dexmedetomidine, respectively, around the saphenous nerve. Then, the rats were subjected to skin/muscle incision and retraction (SMIR) surgery in the medial thigh. Mechanical and heat sensitivity was evaluated and morphology of the dorsal root ganglion (DRG) neurons was observed by electron microscopy.
Results: Some 62.5%, 50%, 12.5%, and 25% of rats developed mechanical hypersensitivity in Groups S, R, RD1, and RD5, respectively. The number of swollen mitochondria in DRG neurons was significantly more in Group S (257.2 ± 60.9) and Group R (291.6 ± 82.1) than in Group RD1 (97.2 ± 33.3) and Group RD5 (13.6 ± 17.9). In addition, the edema in endoplasmic reticulum and Golgi apparatus was decreased in Group RD1 and Group RD5 compared with Group S and Group R.
Conclusion: Peripheral administration of dexmedetomidine improves mechanical and heat hyperalgesia and mitigates postoperative pain
Propofol inhibits the release of interleukin-6, 8 and tumor necrosis factor-α correlating with high-mobility group box 1 expression in lipopolysaccharides-stimulated RAW 264.7 cells
Abstract Background Studies have found that propofol can inhibit endotoxin-induced monocyte-macrophages to produce various inflammatory factors. This study is to disclose whether the propofol affects the expression of high-mobility group box 1 (HMGB1) in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells and the release of interleukin-6 (IL-6), 8 (IL-8) and tumor necrosis factor-α (TNF-α). Methods RAW 264.7 cells were divided into four groups for intervention. After culturing for 16 h, the cells and culture supernatants were collected. The expression of HMGB1 in RAW 264.7 cells was detected by Western blot. The levels of IL-6, IL-8 and TNF-α in supernatants of cells were determined by enzyme-linked immunosorbent assay (ELISA). Results Stimulation of LPS increased the expression of HMGB1 and promoted the release of IL-6, IL-8 and TNF-α in supernatants of RAW 264.7 cells (p < 0.05); however, propofol down-regulated the expression of LPS-stimulated HMGB1 and reduced the LPS-stimulated releases of IL-6, IL-8 and TNF-α in supernatants of RAW 264.7 cells (p < 0.05). Moreover, the releases of IL-6, IL-8 and TNF-α intimately correlated with the expression of HMGB1 in this process (p < 0.05). Conclusion Propofol inhibited the releases of IL-6, IL-8 and TNF-α in LPS-stimulated RAW 264.7 cells, and the levels of IL-6, IL-8 and TNF-α intimately correlated with the expression of HMGB1, which indicating that propofol may prevent inflammatory responses through reducing the releases of these cytokines and inflammatory mediators
Real-Time Tunnel Deformation Monitoring Technology Based on Laser and Machine Vision
Structural health monitoring is a topic of great concern in the world, and tunnel deformation monitoring is one of the important tasks. With the rapid developments in tunnel traffic infrastructure construction, engineers need a portable and real-time system to obtain the tunnel deformation during construction. This paper reports a novel method based on laser and machine vision to automatically measure tunnel deformation of multiple interest points in real time and effectively compensate for the environment vibration, and moreover it can overcome the influence of a dusty and dark tunnel environment in low visibility. An automatic and wireless real-time tunnel deformation monitoring system, which is based on laser and machine vision and can give early warnings for tunnel collapse accidents, is proposed. The proposed system uses a fixed laser beam as a monitoring reference. The image acquisition modules mounted on the measured points receive the laser spots and measure the tunnel accumulative deformation and instantaneous deformation velocity. Compensation methods are proposed to reduce measurement errors caused by laser beam feasibility, temperature, air refraction index, and wireless antenna attitude. The feasibility of the system is verified through tunnel tests. The accuracy of the detection system is better than 0.12 mm, the repeatability is less than 0.11 mm, and the minimum resolution is 10 μm; therefore, the proposed system is very suitable for real-time and automatic detection of tunnel deformation in low visibility during construction
Study on the Antilipidemic Activity of Artemisia Annua Aqueous Extract
Artemisia annua is an annual herb, which is a traditional Chinese medicine in China. The high water soluble artemisinin derivative extracted from Artemisia annua is Artemisia annua water extract. In this experiment, the modeling method is used, and the Artemisia annua water extract is used alone or in combination with other lipid-lowering drugs. Finally, the results showed that the effect of the combination of drugs was better than that of Artemisia annua water extract alone, and the effect of the drug ratio of 1:1 was the best. It can significantly reduce the content of triglyceride in serum and cholesterol, increase the ratio of H/L, and show a good synergistic effect
Influence of different preoperative fasting times on women and neonates in cesarean section: a retrospective analysis
Abstract Background This study was to evaluate the impact of different preoperative fasting conditions on women and neonates through a retrospective analysis. Methods A total of 1599 women were divided into 5 groups according to different preoperative fasting times: group A: solid food ≥8 h; clear fluids ≥6 h; B: solid food ≥8 h; clear fluids ≥2 h  8 h and clear fluids > 2 h at least), the incidence rate of hypoglycemia and acidosis of neonates in group C displayed a certain decrease (P <  0.05). Although shorter fasting times (solid food < 6 h at least) reduced the incidence of hypoglycemia and acidosis in neonates, it increased the risk of vomiting of women. Conclusion The preoperative fasting of solid food ≥6 h < 8 h and clear fluids < 2 h reduces the incidence of vomiting in women’s anesthesia and the risk of hypoglycemia and acidosis in neonates
Study on Glycosylation Modification Technology of Semen Euphorbiae Meal Protein
In order to improve the solubility, emulsification and foamability of the Semen Euphorbiaee, and to improve the utilization of the Semen Euphorbiae, this experiment used glucose as a sugar source and modified the Semen Euphorbiae protein by wet glycosylation. Using solubility as a judgment index, a single factor test was conducted to optimize the conditions for the glycosylation reaction of the golden gold meal protein. The results showed that the solubility and other functional properties of the golden gold meal protein obtained by glycosylation under the conditions of pH 10.5, temperature 83.5 ° C, and meal protein / glucose mass ratio 1: 1.5 were improved
Distance Measurement of Contra-Rotating Rotor Blades with Ultrasonic Transducers
Coaxial rotor helicopters have great potential in civilian and commercial uses, with many advantages, but challenges remain in the accurate measurement of rotor blades’ distance to prevent blade collision. In this paper, a blade tip distance measurement method based on ultrasonic measurement window and phase triggering is proposed, and the triggering time of the transmitter is studied. Due to the complexity of the measured signal, bandpass filtering and a time-of-flight (TOF) estimation based on the power density of the received signal are utilised. The method is tested on an experimental test platform with a pair of 200 kHz ultrasonic transducers. The experimental results show that the maximum ranging error is less than 1.0% for the blade tip distance in a range of 100–1000 mm. Compared with the amplitude threshold method, the proposed TOF estimation method works well on the received signal with a low SNR and improves the ranging accuracy by about 5 mm when the blade tip distance is larger than 500 mm. This study provides a good reference for the accurate measurement of rotor blade tip distance, and gives a solution for ranging high-speed rotating objects
Dose Comparison of Dexmedetomidine Sedation following Spinal Anesthesia: Parturient versus Nonpregnant Women—A Randomized Trial
Background. This study was designed to investigate and compare the effective doses of dexmedetomidine for sedation in parturient patients who underwent Cesarean section (CS) and nonpregnant women who underwent elective gynecologic surgery. Methods. The study comprised 60 females aged between 25 and 35. They were divided into two groups. The parturient group received a bolus dose of dexmedetomidine over 15 min after the delivery of the fetus and placenta. In the nonpregnant women group, a bolus of dexmedetomidine was administered intravenously upon the completion of spinal anesthesia. The subsequent dose required by patients in each group was then determined through a modified two-stage Dixon up-and-down sequential method. Probit analysis was used to calculate the ED50 and the ED95 of dexmedetomidine for adequate sedation. Results. The ED50 of dexmedetomidine for adequate sedation in parturient patients was 1.58 μg/kg (1.51–1.66 μg/kg); in nonpregnant women, it was 0.96 μg/kg (0.91–1.01 μg/kg) (95% CI). The ED95 of dexmedetomidine in parturients was 1.80 μg/kg (1.70–2.16) μg/kg and that of nonpregnant women was 1.10 μg/kg (1.04–1.30 μg/kg) (95% CI). The ED50 in parturients was significantly higher than that in nonpregnant women (P<0.05). Conclusion. The ED50 of dexmedetomidine for target sedation in parturients who received spinal anesthesia for CS is greater than 1.5 times that in nonpregnant women who received spinal anesthesia for lower abdominal gynecologic surgery. This study postulates that the dose of dexmedetomidine required to achieve optimal sedation following spinal anesthesia is much higher in parturients than in nonpregnant women undergoing gynecologic surgeries. This trial is registered with NCT02111421