2 research outputs found

    Структурний і фазово-елементний розподіл у імпульсному плазмовому покритті, отриманому з використанням твердосплавного катоду

    No full text
    Метою даної роботи є дослідження мікроструктурних особливостей покриття, одержаного імпульсно-плазмовою обробкою з використанням твердого сплаву WC-TiC-Со (Т15К6) у якості розхідного (еродуючого) електрода. Покриття наносили на низьколеговану конструкційну сталь 75Г1 за допомогою електротермічного аксіального плазмового прискорювача з потужністю дугового розряду до 20 МВт. В роботі використали мікроскопічний аналіз (за допомогою скандувальних мікроскопів Quanta FEG 650 FEI та Ultra-55 Carl Zeiss), енергодисперсійну спектроскопію (JED-2300, JEOL) та вимірювання мікротвердості (FM-300, Future-Tech Corp.) при навантаженні 20 г. Було встановлено, що після 10 плазмових імпульсів на поверхні сталі утворилось покриття товщиною 95-125 мм, а між покриттям та основою виник модифікований сталевий шар товщиною 33-40 мкм. Покриття складалось із матриці зі структурою високовуглецевого мартенситу або суміші мартенситу і залишкового аустеніту з мікротвердістю 415-977 HV (середнє значення 707 ± 113 HV). В межах матриці виявлено випадково розташовані глобулярні карбіди, збагачені вольфрамом (W,M)C або титаном (Ti,M)C діаметром 0,1-9,1 мм. Загальна об’ємна частка карбідів становила 15 %. EDS дослідження показало, що карбіди одночасно вміщували як вольфрам, так і титан, тобто вони не були "відірвані" з катоду і перенесені плазмовим потоком, а утворились in situ із рідини при кристалізації покриття. Матеріальний вклад катоду в формування покриття не перевищив 17 %, що пояснюється незначною ерозією твердого сплаву через високу температуру плавлення карбідів WC і TiC. Покриття в основному складалося з продуктів ерозії сталевого електроду (аноду) плазмового прискорювача. Матриця покриття виявилась легованою рядом елементів (W, Ti, Co, Cu), які еродували з поверхні катоду під час його плавлення та випаровування під дією високострумового розряду в камері прискорювача.The object of this work is to study microstructural features of the coating obtained by pulsed-plasma deposition using cemented carbide WC-TiC-Со as an eroded electrode. The coating was deposited employing an electro-thermal axial plasma accelerator involving a pulse arc discharge with the power reached 20 MW. Cemented carbide (an alloy of T15K6 grade) was used as a tip of the cathode to be eroded under the discharge. The substrate material was low-alloyed structural steel 75Mn1. The investigations included scanning electron microscopy observation (Quanta FEG 650 FEI, Ultra-55 Carl Zeiss), energy-dispersive Xray spectroscopy (JED-2300, JEOL) and microhardness measurement (FM-300, Future-Tech Corp.) under the load of 20 g. It was shown that after 10 plasma impulses the coating of 95-125 µm thick was obtained tightly adjusted to the modified substrate layer. The coating consisted of high-carbon martensite or martensite/retained austenite matrix with a microhardness of 415-977 HV (mean value of 707 ± 113 HV) and of randomly distributed 2.1 vol. % globular carbides (W,M)C and (Ti,M)C of 0.2-8.5 µm diameter. EDS study revealed that the carbides were alloyed with tungsten and titanium both. It allowed to conclude that carbides were not transferred by plasma flux but they crystallized in situ from the melt deposited on the substrate surface. The contribution of cemented carbide to the coating formation was limited by 17 % which was explained by low cemented carbide erosion caused by the high temperature of carbides WC and TiC melting. The coating was mostly composed of the product of the erosion of a steel anode. The matrix was alloyed with the elements (W, Ti, Co, Cu), released from the cathode during its melting/evaporation under the high-current discharge

    Лазерне оплавлення навуглецевого біомедичного сплаву на основі титану, виготовленого методом LPBF-друку

    No full text
    Об’єктом даної роботи є дослідження зміни мікроструктури та твердості біомедичного сплаву Ti-6Al-4V, виготовленого за технологією LPBF-друку, в результаті цементації в твердому карбюризаторі та подальшого оплавлення поверхні лазерним променем. Навуглецювання проводили в порошковому карбюризаторі (20 об. % (NH2)2CO, 20 об. % K4Fe(CN)6 та 60 об. % сажі) при 1000 °C впродовж 7 год. Для лазерної обробки використали волоконний лазер «TruFiber 400» (TRUMPF) (довжина хвилі – 1064 нм, потужність – 400 Вт, швидкість сканування – 5 мм·с – 1). Дослідження включали оптичну (GX71 OLYMPUS) та сканувальну електронну мікроскопію (JSM-7000F JEOL), енергодисперсійну спектроскопію (INCAx-sight, Oxford Instruments), рентгенівську дифракцію (X'Pert PRO, PANalytical, Cu-Kα) та вимірювання мікротвердості (LM700AT LECO, навантаження 0,05 кг). Було виявлено, що цементація забезпечила формування шару стабілізованої вуглецем αTi-фази товщиною 440-700 мкм з тонким верхнім шаром, що містить TiC, TiO2 та Al2O3. Після навуглецювання твердість приповерхневого шару склала 720±12 HV, що вдвічі вище твердості основи (322±32 HV). Наступне сканування лазерним променем сформувало оплавлений шар товщиною 60-120 мкм, під яким на глибину до ~ 0,8 мм простяглася зона термічного впливу, що складалась із збагаченого на вуглець голчастого αTi-мартенситу. Оплавлений шар мав дрібнозернисту структуру, яка вміщувала дисперсні включення оксикарбіду Ti(O0,8C0,2) зернистої або дендритної форми. Твердість оплавленого шару становила 1000-1200 HV з подальшим поступовим зниженням вглиб зразка відповідно до зниження вмісту вуглецю. Лазерне оплавлення супроводжувалося утворенням тріщин і усадкових порожнин у приповерхневому шарі. Також воно призвело до підвищення шорсткості поверхні внаслідок її кипіння під лазерним променем, що пов’язано із низькою теплопровідністю сплаву Ti-6Al-4V.The object of this work is a study of the microstructure and hardness evolution of LPBF-manufactured biomedical alloy Ti-6Al-4V superficially modified by pack carburization and subsequent laser melting. Carburization was conducted in a powder of (NH2)2CO (20 vol. %), K4Fe(CN)6 (20 vol. %), and a carbon black (60 vol. %) at 1000 °C (7 hours). The laser processing was fulfilled by fiber laser «TruFiber 400» (TRUMPF) of 1064 nm wavelength with a power of 400 W and scanning velocity of 5 mm·sec – 1. The investigations included optical (GX71 OLYMPUS) and scanning electron microscopy observations (JSM-7000F JEOL), energy-dispersive X-ray spectroscopy (INCAx-sight, Oxford Instruments), X-ray diffraction (X'Pert PRO, PANalytical, Cu-Kα radiation) and microhardness measurement (LM700AT LECO, under the load of 0.05 kg). It was found that carburization resulted in a 440-700 µm deep carbonrich layer of αTi with an upper thin layer comprising TiC, TiO2, and Al2O3. Carburization led to 720 ± 12 HV in a near-surface layer which is two times the bulk structure (322 ± 32 HV). A consequent laser scanning formed a 60-120 µm wide melted layer followed by the heat-affected zone (having a needle-like αTi-martensite) extended to ~ 0.8 mm depth. The melted layer had a fine-grained structure which included the dispersive particles of an oxycarbide Ti(O0.8C0.2) of both grainy and dendrite-like shapes. Consequently, the hardness of the melted layer rose up to 1000-1200 HV with a further gradual decrease, according to the declining carbon content profile. Laser melting was accompanied by cracks and shrinkage cavities formation. It also led to an increased roughness of the surface caused by its boiling under the laser melting
    corecore