3 research outputs found

    Automotive radiators : An experimental analysis of hybrid nanocoolant

    Get PDF
    A hybrid nanocoolant is a novel type of heat transfer enhancement medium that has the potential to enhance the performance of automotive radiators by improving heat transfer efficiency and heat dissipation. The focus of the present work was to investigate the effect of different hybrid nanocoolant mixing ratios on Reynolds number, Nusselt number, Friction factor, heat transfer coefficient and convective heat transfer on heat transfer performance. Single and its hybrid nanocoolant were tested through a commercial-sized automotive radiator and a scaled-down automotive radiator to determine its laminar convective heat transfer. The nanocoolants are prepared with a fixed volume fraction of 0.01 vol% and for hybrid nanocoolants, different ratios of CNC and CuO nanoparticles are formulated. The studies utilised flow rates of 0.75, 1.00, and 1.25 LPM with a radiator inlet liquid temperature of 80°C. The experimental results show that the Reynolds number, Nusselt Number, heat transfer coefficient and convective heat transfer are proportionally related to the volumetric flow rate, while the friction factor decreases when there is an increase in the flow rate. A scale-down radiator with a low-volume concentration of hybrid nanofluids able to improve the heat transfer efficiency by 92.43% compared to conventional fluids in a commercial-sized car radiator

    Enhancing Heat Transfer in Compact Automotive Engines using Hybrid Nano Coolants

    Get PDF
    This research aimed to compare the performance of a reduced-scale automotive radiator using single nano coolant (CNC and CuO) and its hybrid nano coolant (CNC and CuO nanoparticles) to enhance heat transmission. Three ratios of 70:30, 80:20, and 90:10 of hybrid nano coolants was tested. UV Vis stability characterization of the nanofluids showed that all samples were highly stable for up to 30 days. A modest concentration (0.01 vol per cent) of the hybrid nano coolant was shown to efficiently increase the heat transfer rate of a reduced-size automobile radiator, demonstrating that the heat transfer behaviour of the nano coolant was reliant on the particle volume percentage. The results show the potential use of hybrid nano coolants in increasing heat transfer efficiency, decreasing cooling system size by up to 71 percent, and thus lowering fuel consumption; these benefits have significant implications for developing more efficient cooling systems in various industrial applications. The experimental findings showed that 80:20 exhibited a significant amount of improvement in thermal properties. The consistency of the low volume concentration of hybrid nano coolants throughout the experiment is further evidence of their promise as a practical substitute for conventional cooling media in the compact size of an automotive engine cooling system

    Exploring the Potentials of Copper Oxide and CNC Nanocoolants

    Get PDF
    The characteristics, stability, kinematic viscosity, viscosity index, thermal conductivity, and specific heat changes of Copper Oxide (CuO) and Cellulose Nanocrystal (CNC) hybrid nanocoolants at low concentrations are investigated in this work. The hybrid nanocoolants were created using different ratios of CNC and CuO nanoparticles and compared to single nanoparticle coolants. The existence of Cu-O and other similar formations was verified using Fourier Transform Infrared Spectroscopy (FTIR). Visual examination and UV Spectrophotometry stability study revealed that the nanocoolants were stable for up to 8 weeks, with little precipitation seen for single nanoparticle coolants after 12 weeks. When tested against temperature, kinematic viscosity decreased with increasing temperature, with very minor differences amongst coolants. The results of the Viscosity Index (VI) indicated that the hybrid nanocoolant performed similarly to the basic fluid, Ethylene Glycol (EG), even at high temperatures. Thermal conductivity rose as temperature increased, with a single CuO nanocoolant and a CNC:CuO (80:20) hybrid having the maximum conductivity. Specific heat capacity measurements revealed a declining trend as temperature rose. Overall, the CNC:CuO (80:20) hybrid nanocoolant and the CuO single nanocoolant displayed improved characteristics and stability, suggesting their potential for increased heat transfer applications
    corecore