2,665 research outputs found

    Soliton creation during a Bose-Einstein condensation

    Full text link
    We use stochastic Gross-Pitaevskii equation to study dynamics of Bose-Einstein condensation. We show that cooling into a Bose-Einstein condensate (BEC) can create solitons with density given by the cooling rate and by the critical exponents of the transition. Thus, counting solitons left in its wake should allow one to determine the critical exponents z and nu for a BEC phase transition. The same information can be extracted from two-point correlation functions.Comment: 4 pages, 3 figures, improved version to appear in PRL: scalings discussed more extensively, fitting scheme for determination of z and nu critical exponents is explaine

    Unconditional Pointer States from Conditional Master Equations

    Get PDF
    When part of the environment responsible for decoherence is used to extract information about the decohering system, the preferred {\it pointer states} remain unchanged. This conclusion -- reached for a specific class of models -- is investigated in a general setting of conditional master equations using suitable generalizations of predictability sieve. We also find indications that the einselected states are easiest to infer from the measurements carried out on the environment.Comment: 4 pages, 3 .eps figures; final version to appear in Phys.Rev.Let

    Topological Schr\"odinger cats: Non-local quantum superpositions of topological defects

    Full text link
    Topological defects (such as monopoles, vortex lines, or domain walls) mark locations where disparate choices of a broken symmetry vacuum elsewhere in the system lead to irreconcilable differences. They are energetically costly (the energy density in their core reaches that of the prior symmetric vacuum) but topologically stable (the whole manifold would have to be rearranged to get rid of the defect). We show how, in a paradigmatic model of a quantum phase transition, a topological defect can be put in a non-local superposition, so that - in a region large compared to the size of its core - the order parameter of the system is "undecided" by being in a quantum superposition of conflicting choices of the broken symmetry. We demonstrate how to exhibit such a "Schr\"odinger kink" by devising a version of a double-slit experiment suitable for topological defects. Coherence detectable in such experiments will be suppressed as a consequence of interaction with the environment. We analyze environment-induced decoherence and discuss its role in symmetry breaking.Comment: 7 pages, 4 figure

    Decoherence, Re-coherence, and the Black Hole Information Paradox

    Get PDF
    We analyze a system consisting of an oscillator coupled to a field. With the field traced out as an environment, the oscillator loses coherence on a very short {\it decoherence timescale}; but, on a much longer {\it relaxation timescale}, predictably evolves into a unique, pure (ground) state. This example of {\it re-coherence} has interesting implications both for the interpretation of quantum theory and for the loss of information during black hole evaporation. We examine these implications by investigating the intermediate and final states of the quantum field, treated as an open system coupled to an unobserved oscillator.Comment: 23 pages, 2 figures included, figures 3.1 - 3.3 available at http://qso.lanl.gov/papers/Papers.htm

    Decoherence, Chaos, and the Second Law

    Full text link
    We investigate implications of decoherence for quantum systems which are classically chaotic. We show that, in open systems, the rate of von Neumann entropy production quickly reaches an asymptotic value which is: (i) independent of the system-environment coupling, (ii) dictated by the dynamics of the system, and (iii) dominated by the largest Lyapunov exponent. These results shed a new light on the correspondence between quantum and classical dynamics as well as on the origins of the ``arrow of time.''Comment: 13 Pages, 2 Figures available upon request, Preprint LA-UR-93-, The new version contains the text, the previous one had only the Macros: sorry

    Probabilities from envariance?

    Full text link
    Zurek claims to have derived Born's rule noncircularly in the context of an ontological no-collapse interpretation of quantum states, without any "deus ex machina imposition of the symptoms of classicality." After a brief review of Zurek's derivation it is argued that this claim is exaggerated if not wholly unjustified. In order to demonstrate that Born's rule arises noncircularly from deterministically evolving quantum states, it is not sufficient to assume that quantum states are somehow associated with probabilities and then prove that these probabilities are given by Born's rule. One has to show how irreducible probabilities can arise in the context of an ontological no-collapse interpretation of quantum states. It is argued that the reason why all attempts to do this have so far failed is that quantum states are fundamentally algorithms for computing correlations between possible measurement outcomes, rather than evolving ontological states.Comment: To appear in IJQI; 9 pages, LaTe
    • …
    corecore