5 research outputs found

    ASFL-YOLOX: an adaptive spatial feature fusion and lightweight detection method for insect pests of the Papilionidae family

    Get PDF
    IntroductionInsect pests from the family Papilionidae (IPPs) are a seasonal threat to citrus orchards, causing damage to young leaves, affecting canopy formation and fruiting. Existing pest detection models used by orchard plant protection equipment lack a balance between inference speed and accuracy.MethodsTo address this issue, we propose an adaptive spatial feature fusion and lightweight detection model for IPPs, called ASFL-YOLOX. Our model includes several optimizations, such as the use of the Tanh-Softplus activation function, integration of the efficient channel attention mechanism, adoption of the adaptive spatial feature fusion module, and implementation of the soft Dlou non-maximum suppression algorithm. We also propose a structured pruning curation technique to eliminate unnecessary connections and network parameters.ResultsExperimental results demonstrate that ASFL-YOLOX outperforms previous models in terms of inference speed and accuracy. Our model shows an increase in inference speed by 29 FPS compared to YOLOv7-x, a higher mAP of approximately 10% than YOLOv7-tiny, and a faster inference frame rate on embedded platforms compared to SSD300 and Faster R-CNN. We compressed the model parameters of ASFL-YOLOX by 88.97%, reducing the number of floating point operations per second from 141.90G to 30.87G while achieving an mAP higher than 95%.DiscussionOur model can accurately and quickly detect fruit tree pest stress in unstructured orchards and is suitable for transplantation to embedded systems. This can provide technical support for pest identification and localization systems for orchard plant protection equipment

    HOG-SVM Impurity Detection Method for Chinese Liquor (Baijiu) Based on Adaptive GMM Fusion Frame Difference

    No full text
    Chinese liquor (Baijiu) is one of the four major distilled spirits in the world. At present, liquor products containing impurities still exist on the market, which not only damage corporate image but also endanger consumer health. Due to the production process and packaging technologies, impurities usually appear in products of Baijiu before entering the market, such as glass debris, mosquitoes, aluminium scraps, hair, and fibres. In this paper, a novel method for detecting impurities in bottled Baijiu is proposed. Firstly, the region of interest (ROI) is cropped by analysing the histogram projection of the original image to eliminate redundant information. Secondly, to adjust the number of distributions in the Gaussian mixture model (GMM) dynamically, multiple unmatched distributions are removed and distributions with similar means are merged in the process of modelling the GMM background. Then, to adaptively change the learning rates of the front and background pixels, the learning rate of the pixel model is created by combining the frame difference results of the sequence images. Finally, a histogram of oriented gradient (HOG) features of the moving targets is extracted, and the Support Vector Machine (SVM) model is chosen to exclude bubble interference. The experimental results show that this impurity detection method for bottled Baijiu controls the missed rate by within 1% and the false detection rate by around 3% of impurities. Its speed is five times faster than manual inspection and its repeatability index is good, indicating that the overall performance of the proposed method is better than manual inspection with a lamp. This method is not only efficient and fast, but also provides practical, theoretical, and technical support for impurity detection of bottled Baijiu that has broad application prospects
    corecore